3. Алгебра комплексных чисел
Комплексным числом называют пару чисел, изображающих вектор на комплексной плоскости. Будем изображать комплексное число заглавной буквой с чертой внизу (). Вводится мнимая единица:
Комплексное число может быть представлено в разных формах:
– показательная форма: - это вектор на комплексной плоскости, где - длина (модуль) вектора, - аргумент или фаза. Фазу всегда отсчитывают против часовой стрелки от положительного направления вещественной оси;
– алгебраическая форма: – это точка на комплексной плоскости, где - координаты по вещественной и мнимой осям, причем:
, ,
, если ,
=
, если <.
Переход от одной формы записи комплексного числа к другой:
.
Складывать комплексные числа предпочтительно в алгебраической форме либо геометрически по правилу параллелограмма:
Вычитать комплексные числа удобно в алгебраической форме либо геометрически по правилу параллелограмма (вектор разности направлен из конца вычитаемого в конец уменьшаемого):
Умножать и делить комплексные числа удобнее в показательной форме:
; .
Комплексные числа, не зависящие от времени, обозначают заглавными буквами с чертой внизу: , а комплексно сопряженные им числа обозначают еще и звездочкой сверху: это числа, у которых та же вещественная часть, а мнимая с обратным знаком.
Комплексные числа, которые являются функциями времени, обозначают заглавными буквами с точкой сверху: , а комплексно сопряженные им числа обозначают заглавными буквами со звездочкой сверху : это числа, у которых тот же модуль, но фаза с обратным знаком.
Так как , то умножить комплексное число на j это значит, не изменяя его модуля, увеличить фазу на 900 или повернуть соответствующий вектор на 900 против часовой стрелки. Разделить на j - наоборот:
.
4. Символический метод
Пусть есть комплексное число с линейно изменяющимся во времени аргументом: . На комплексной плоскости это число представляет неизменный по длине вектор, вращающийся против часовой стрелки с постоянной скоростью w.
Любую синусоидальную функцию времени можно представить в виде проекции на вещественную или мнимую ось соответствующего вращающегося вектора.
Проекция вектора на мнимую ось дает синусоидально изменяющуюся функцию времени:
Вводят специальное обозначение (символы):
- комплекс амплитудного значения тока или
- комплекс амплитудного значения напряжения. Они содержат информацию об амплитуде и начальной фазе синусоидального колебания.
Комплекс амплитудного значения деленный на, дает комплекс действующего значения:
и .
Комплекс амплитудного или комплекс действующего значения позволяют перейти к мгновенному значению, например:
;
.
5. Законы цепей в символической форме
1. Первый закон Кирхгофа
Алгебраическая сумма мгновенных значений токов ветвей, сходящихся в одном узле, равна нулю..
Подставим вместо каждого мгновенного значения тока его представление в виде комплекса амплитудного значения, тогда .
Так как в любой момент времени нулю равна сумма проекций вращающихся векторов, следовательно, нулю должна равняться сумма самих вращающихся векторов, т.е. получим . Так как , то сократим на нее и получим .
Алгебраическая сумма комплексов амплитудных значений токов ветвей, сходящихся в одном узле, равна нулю.
Поделив на , получим первый закон Кирхгофа для комплексов действующих значений.
2. Второй закон Кирхгофа
После аналогичных преобразований получим:
или .
Алгебраическая сумма комплексов амплитудных (действующих) значений напряжений на всех элементах контура, кроме ЭДС равна алгебраической сумме комплексов амплитудных (действующих) значений ЭДС этого же контура.
Однако для самих амплитудных и действующих значений законы Кирхгофа не выполняются.
Список литературы
1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.
2. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)
3. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н. Зуб, С.М. Милюков. Рязань, 2005. 16 с.
4. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков.-М.: Энергия, 1979. 424 с.
5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.
... можно строить схемы замещения реальных элементов цепи. 3. Топологические элементы схем Кроме рассмотренных элементов существуют топологические элементы, которые позволяют описать структуру цепи. Основные понятия: 1) Ветвь – соответствует участку цепи, в котором все элементы стоят последовательно, т.е. по которому протекает один и тот же ток. 2) Узел – место соединения трех и более ветвей ...
... любой из ветвей выбранного сечения приводит к связному графу. Отмеченные выше понятия и положения будут использованы в дальнейшем при расчете электрических цепей по методам, вытекающим из законов Кирхгофа. Теорема замещения В теории электрических цепей как при доказательствах ряда ее положений, так и при численных расчетах используется теорема замещения: значения всех напряжений и токов в ...
... соотношений и решает задачу вычисления реакции линейной электрической цепи на заданное непрерывное воздействие по известной переходной характеристики цепи . Эти соотношения называют интегралами Дюамеля. 3. Импульсные характеристики электрических цепей Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных ...
... Токи и находим по правилу деления тока : ; Напряжения на резисторах по известным токам в них вычисляются по закону Ома. Расчет резистивных электрических цепей методом токов ветвей Расчет сложных резистивных цепей, т. е. цепей, не сводящихся к последовательному или параллельному соединению элементов, основывается на использовании законов Кирхгофа. Если цепь имеет элементов, то ...
0 комментариев