7. Расчет передаточного числа рычажной передачи вагона

 

Передаточным числом рычажной передачи называется отношение теоретической величины суммы сил нажатия тормозных колодок вагона к силе давления сжатого воздуха на поршень тормозного цилиндра


n = (Kдоп·mв)/(Ршт·ηрп),(7.1)

где Ршт - усилие по штоку тормозного цилиндра, кН;

ηрп -КПД рычажной передачи, принимаем 0,80.

Величина усилий по штоку тормозного цилиндра определяется

Ршт = πd2тцPтц·ηтц /4 – (F1 + F2 + Lшт·Ж),(7.2)

где ηтц - коэффициент, учитывающий потери на трение поршня о стенки тормозного цилиндра, который равен 0,98;

F1 - усилие оттормаживающей пружины в отпущенном состоянии, 1500-1590 Н, принимаем 1580 Н;

F2 - усилие пружины бескулисного автоматического регулятора рычажной передачи, приведенное к штоку тормозного цилиндра, которое принимается равным 300 - 1500 Н при рычажном приводе и 2000 – 2500 Н при стержневом;

Ж - жесткость отпускаемой пружины тормозного цилиндра, 6540 Н/м.

Ршт = 3,14·0,3562·0,43·106·0,98 /4 – (1545 + 1000 + 0,175·6540) = 20 кН

n = (26,1·16)/(0,95·20) = 23,5

8. Определение размеров плеч рычагов рычажной передачи

Для принятой схемы рычажной передачи передаточное число определяется из соотношения ведущих и ведомых плеч рычагов

n = m·(а·б/в·г)cosα, (8.1)

где α - угол действия силы нажатия тормозной колодки на колесо, принимается равным 10о.

а, б, в, г - размеры плеч рычагов, в = г = 230 мм, а + б = 650 мм.

23,5 = 8а/(650 –а)·(230/230)·0,985

а = 487 мм б = 163 мм

Рисунок 8.1 – Схема рычажного привода авторегулятора

Расстояние между упором привода и корпусом регулятора

А = n·к·(б-с/d-c) – mг(8.2)

где к – величина зазора между колесом и колодкой, к = 0,01м;

mг – величина конструктивных зазоров между деталями рычажной передачи,

mг = 0,009 м.

Размер с определяется из соотношения

F2 = (Fp + Жр·Lp)·(б/а – с/а·(l + d)/а)(8.3)

где F2 - усилие предварительного натяга пружины авторегулятора, Н

(Fp = 2000 Н);

Жр - жесткость пружины регулятора, Н/м (Жр = 1500 Н/м);

Lр - величина сжатия пружины регулятора при торможении, м

(для 8ми-осных вагонов при чугунных колодках Lр = 0,015 м);

а, б, с, d, l – размеры плеч горизонтального рычага и рычажного привода регулятора, м.

1000 = (2000 + 1500·0,015)·(0,163/0,487 – (с/0,487)·(0,65/0,487)),

с = 0,055 м = 55 мм ,

d = 542 мм ,

l = 108 мм.

А = 23,5·0,01·(0,163 – 0,055)/(0,542 + 0,055) – 0,009 = 34 мм

9. Определение размеров поперечных сечений элементов рычажной передачи

Усилие на штоке поршня тормозного цилиндра определяется

Ршт = πd2тцPтц·ηтц /4 – (F1 + Lшт·Ж),(9.1)

Ршт = 19,7 кН

Определяем силы действующие на рычажную передачу

Ршт = Р1 ,

Р2 = Р1(а +б) /б = 19,7·(487 + 163)/163 = 78,6 кН(2.27)

Р3 = Р1 (а / б) = 19,7 (487 / 163) = 58,9 кН, (9.2)

Р4 = Р3 (m / 2m) = 29,45 кН(9.3)

Р5 = Р4(в + г / г) = 58,9 кН(9.4)

Р6 = Р4 = 29,45 кН(9.5)

Определив значения сил, действующих на шарнирные соединения, рассчитываем валики на изгиб.

Валики шарнирных соединений рычажной передачи рассчитываем на изгиб по формуле

σ = P1/(0,4·d3·103)·(b – a/2) < [σ] ,(9.6)


где Р – расчетная нагрузка на валик, кН;

d – диаметр валика, м. Принимаем d = 0,04 м;

b – расстояние между серединами опор, м;

а – длина поверхности передающей нагрузку, м;

[σ] – допускаемые напряжения при изгибе, МПа. Все детали тормозной рычажной передачи изготовлены из стали 5, принимаем по [1] (табл. 9.1) [σ] = 160 МПа.

Рисунок 9.1 – Расчетная схема шарнирного соединения

b = а + 15 = 25 + 15 = 40 мм.(9.7)

σ = 57/(0,4·0,043·103)·(0,04 – 0,025/2) = 61 МПа < [σ]

Условие выполняется, прочность валика на изгиб обеспечена.

Тяги рычажной передачи рассчитываются на растяжение.

[σ] = P2·4/(π·d2т·103) < [σ], (9.8)

где Р – усилие передаваемое на тягу, кН;

dт – диаметр тяги, м. Принимаем dт = 0,022 м.

[σ] = 57·4/(3,14·0,0222·103) = 150 МПа< [σ]

Условие выполнено, прочность тяги обеспечена.

Проушины тяги рассчитываются на смятие и срез. Напряжение смятия и среза определяется по формуле

σ см = 4·Р3/(π·t·d1·103) < [σ см],(9.9)

τср = Р3/(2·t·h·103) < [τср](9.10)

где Р – усилие смятия (среза) действующее на проушину, кН;

t – толщина проушины, м;

d1 – диаметр отверстия проушины, м;

h – высота сечения проушины по линии среза, м; принимаем

h = R – d1/2(9.11)

где R – радиус наружного очертания пружины, м.

Принимаем t = 0,015 м; d1 = 0,04 м; R = 0,0375 м; [σ см] = 170МПа; [τср] = 95 МПа.

h = 0,0375 – 0,04/2 = 0,0175 м

σ см = 4·28,5/(3,14·0,015·0,04·103) = 62 МПа < [σ см],

τср = 28,5/(2·0,015·0,0175·103) = 55 МПа < [τср].

Условия выполнены, прочность проушины обеспечена.

Рычаги также рассчитываем на изгиб. Напряжения при изгибе определяются по формуле

σ изг = Ми/Wx < [σ изг],(9.12)

где Ми – изгибающий момент в сечении среднего шарнира рычага, Н·м;

Wx – момент сопротивления сечения, м3.


Рисунок 9.2 – Горизонтальный рычаг

Wx = 2·h/6·H·(H3 – d3) ,(9.13)

где Н – ширина рычага, Н = 0,18 м;

d – диаметр валика, d = 0,04 м;

h – толщина рычага, h = 0,015 м.

Wx = 2·0,015/6·0,18·(0,183 – 0,043) = 1,6·10-4 м 3.

Изгибающий момент в сечении среднего шарнира рычага определяется по формуле

Ми = Ршт·а = 57·0,251 = 14,3 кН·м, (9.14)

σ изг = 14,3/1,6·10-4 = 89 МПа < [σ изг] = 160 МПа.

Прочность рычага обеспечена.

Рассчитываем вертикальный рычаг на изгиб


Рисунок 9.3 – Вертикальный рычаг

По формуле (9.32) определяем момент сопротивления сечения

Wx = 2·0,015/6·0,16·(0,163 – 0,043) = 1,26·10-4 м3.

Находим изгибающий момент

Ми = Ршт·b = 57·0,249 = 14 кН·м ,(9.15)

σ изг = 14/1,26·10-4 = 111 МПа < [σ изг] = 160 МПа.

Прочность вертикального рычага на изгиб обеспечена.

Затяжка горизонтальных рычагов проектируется из условия ее вписывания в габаритные размеры тормозного цилиндра.

Рисунок 9.4 – Схема вписывания затяжки горизонтальных рычагов в габариты тормозного цилиндра

Зазор х, обозначенный на рисунке 9.7, находится

х = 251 – (200 + 50) = 1 мм.

Свободное вписывание затяжки обеспечено.

Так как данная затяжка выполнена без изгиба, то расчет производится только на сжатие. Напряжение при сжатии

σсж = Р1/(Н·h) ,(9.16)

где Н – ширина затяжки, м;

h – толщина затяжки, м;

Р – сила, действующая на затяжку, Н;

σсж = 57/(0,1·0,025) = 23 МПа < [σсж] = 160 МПа.

Прочность затяжки горизонтальных рычагов обеспечена.


Информация о работе «Проектирование тормозной схемы электровоза»
Раздел: Транспорт
Количество знаков с пробелами: 20316
Количество таблиц: 5
Количество изображений: 7

Похожие работы

Скачать
22042
3
6

... рамы относятся момент инерции и момент сопротивления. В зависимости от назначения, конструкции и типа рам поперечные сечения элементов могут иметь разнообразные формы. На рисунке 5.1 приведено расчетное поперечное сечение боковины сварной рамы тележки электровоза ВЛ10. Рисунок 5.1 – Поперечное сечение концевой балки тележки ВЛ10 Параметры сечения ; ; ; ; Ввиду несимметричности сечения ...

Скачать
87173
11
9

... недопустимого вакуума после разогрева груза паром, пропарки котла или при сливе продукта при закрытых крышках люков. 2.   Выбор оптимальных параметров восьмиосной цистерны модели 15-1500 2.1.Вписывание вагона в габарит Ширина вагона определяется из условия вписывания вагона в габарит: 2В = 2×(В0 – Е) ...

Скачать
81286
11
15

... Затем производят дефектоскопию осей. Проверяют соответствие размеров всех элементов колёсной пары установленным нормам допусков и износов, наличие установленных клейм и знаков, состояние пружинных пакетов и заклёпок зубчатых колёс колёсных пар электровозов, а также болтов, крепящих зубчатое колесо к центру колёсной пары. Контролируют состояние зубьев, плотность посадки косозубых колёс, разбирают и ...

Скачать
153018
13
0

... для выдачи загрязненного воздуха с горных работ верхних горизонтов в количестве 545 м3/сек, функции сохраняются на весь период отработки залежей Центральная, Риддерская, Заводская. Проектом «Реконструкция рудников Риддер-Сокольного месторождения», в соответствии с которым велось строительство и эксплуатация рудников, предусматривалась максимальная производительность по добыче руды объемом 2850 ...

0 комментариев


Наверх