1.2. Основні напрямки застосування низькотемпературної плазми.
Низькотемпературна плазма (Т ~ 103 К) знаходить застосування в газорозрядних джерелах світла й у газових лазерах, у термоемісійних перетворювачах теплової енергії в електричних і в магнітогідродинамічних генераторах, де потік плазми гальмується в каналі з поперечним магнітним полем, що приводить до появи між верхнім і нижнім електродами електричного поля [7].
Плазмотрони, що створюють потоки щільної низькотемпературної плазми, широко застосовуються в різних областях техніки. Зокрема, з їхньою допомогою ріжуть і зварюють метали, наносять покриття. У плазмохімії низькотемпературну плазму використовують для одержання деяких хімічних сполук, наприклад, галогенидів інертних газів, що не вдається одержати другим шляхом. Крім того, високі температури плазми приводять до високої швидкості протікання хімічних реакцій — як прямих реакцій синтезу, так і зворотних реакцій розкладання. Якщо робити синтез «на прольоті» плазменого потоку, розширюючи і тим самим швидко прохолоджуючи нею на наступній ділянці (така операція наз. загартуванням), то можна утруднити зворотні реакції розкладання й істотно підвищити вихід необхідного продукту.
1.3. Методи зондових вимірювань.
Зондом називається металевий електрод невеликих розмірів, поміщений у плазму.
Від інших засобів плазменої діагностики зонди відрізняються тим, що дозволяють робити прямі локальні виміри параметрів плазми.
В даний час існує кілька основних напрямків плазмових досліджень [8], для кожного з яких значення і застосовність зондових вимірів різні. У багатьох задачах газової електроніки здійснюються умови, у яких зондові виміри зберігають домінуючу роль. Це справедливо в тому випадку, коли температура електронів і їхня концентрація не дуже великі, а магнітні поля малі. Теорія й експериментальна техніка зондових вимірів для плазми високої щільності в сильному магнітному полі значно ускладнюється. У цьому випадку важко встановити правильний однозначний зв'язок між величиною зондового струму і параметрами плазми. Слід зазначити збурений вплив зонда на плазму можна зменшити, направляючи останній у короткі проміжки часу з «гарячої» зони в область розташування зонда. Однак у цьому випадку на плазму збурену дію надають електромагнітні поля, за допомогою яких здійснюється такий добір. Нарешті, частинки гарячої плазми, що мають високі енергії, викликають вторинні процеси на поверхні зонда, що приводить до перекручування зондових характеристик.
Зонди застосовувалися для дослідження газових розрядів ще на початку минулого століття (наприклад, Круксом). Однак лише у 20-х роках Ленгмюр і його співробітники, розвивши теорію методу, зробили зондовий метод одним з найбільш ефективних засобів плазмової діагностики.
Дослідження Ленгмюра були обмежені випадком плазми низького тиску, коли зіткненнями між частинками плазми можна знехтувати. У цьому випадку йому вдалося побудувати відносно просту і внутрішньо погоджену теорію. В даний час ясно, що деякі з припущень теорії Ленгмюра навряд чи виконуються при практичних додатках. Проте результати Ленгмюра і понині лежать в основі будь-якого дослідження, зв'язаного з застосуванням зондів.
Суть методу полягала у вимірі струму заряджених частинок на малий заряджений електрод, поміщений у плазму. Залежність цього струму від потенціалу електрода називається зондовой характеристикою. З зондовой характеристики за певних умов можна обчислити основні параметри плазми — температуру і концентрацію заряджених частинок і потенціал простору. У деяких випадках зондові виміри дозволяють визначити функцію розподілу частинок по енергіям.
Створюючи основи зондовой теорії, Ленгмюр виходив із припущення про рівноважну функцію розподілу заряджених частинок по швидкостях у збуреної плазмі. Він розглядав дві характерні зони: область плазми й область слоя поблизу зонда (або стінки).
Для наближеного визначення ходу потенціалу поблизу зонда були зроблені наступні припущення:
1) в області плазми можна знехтувати об'ємним зарядом частинок через її квазінейтральність;
2) в області слоя при негативному потенціалі зонда можна знехтувати зарядом, створюваним електронами;
3) утворення іонів в слої і вторинних частинок на поверхні зонда не відбувається;
4) на зовнішній границі слоя об'ємного заряду потенціал плазми звертається в нуль, тобто плазма за межами слоя не возмушена.
Виходячи з цих припущень легко знайти зв'язок між струмом зонда і параметрами плазми, що приводить до таких співвідношень для великого зонда (R0>>D) при не дуже високому негативному потенціалі:
(1.17)
(1.18)
Тут Ii і Ie — струми іонів і електронів на зонд відповідно; Ti і Ті — температури цих частинок; ni і ne — їх концентрації в невозмушеной плазмі; Мi і me -маса іона й електрона відповідно; U0 і R0 — потенціал і радіус зонда; D — дебаєвський радіус екранування; k — стала Больцмана; е — заряд електрона.
Зі співвідношення (1.18) видно, що по нахилі електронної характеристики в напівлогарифмічному масштабі легко визначити електронну температуру Ті. Іонний струм у випадку великого негативного зонда, по Ленгмюру, не залежить від його потенціалу (U<0). Для узгодження виразу (1.17) з експериментальними даними приходилося допускати, що температура іонів у газовому розряді дуже велика. Це допущення не відповідало основним теоретичним представленням і даним інших експериментальних методів вимірів.
У роботах Ленгмюра фактично не було враховане проникнення електричного поля зонда в квазінейтральну плазму, у зв'язку з чим величина потоку частинок, що притягаються, виявилася заниженою.
Згодом Бомом був отриман вираз для іонного струму з урахуванням проникнення поля зонда в плазму. Зневажаючи тепловим рухом частинок, що притягаються, Бом одержав для випадку Te>>Ti досить важливе наближене співвідношення, що широко застосовується при обробці результатів зондових вимірів
(1.19)
де — густина іонного струму насичення. Відповідно до цього співвідношення, потік іонів на зонд залежить лише від температури електронів і практично не залежить від теплового руху іонів у невозмушеной плазмі.
Найважливішими факторами, що визначають вид зондової характеристики, є середня довжина вільного пробігу заряджених частинок і напруженість магнітного поля в зоні виміру. У зондовій теорії при відсутності магнітного поля розглядають такі співвідношення між довжиною вільного пробігу і розміром зонда:
У першому випадку зіткнення між частинками відіграють незначну роль; у третьому — варто враховувати зіткнення і дифузійні процеси в газі. Другий випадок є проміжним. Магнітне поле викривляє траєкторії частинок і тим самим впливає на величину зондового струму. Коли ларморовський радіус обертання заряджених частинок стає порівнянним або менше розмірів зонда, важливу роль починають грати дифузійні процеси в магнітному полі.
Надалі теорія зондових вимірів розвивалася в роботах Венцеля, Аллена, Бойда і Рейнольдса, Бернштейна і Рабиновича, Кагана і Переля й інших авторів. У деяких з цих робіт задачу про розподіл потенціалу вирішували чисельно у всій збуреній області поблизу зонда. Цей метод рішення більш точний у порівнянні зі штучним прийомом поділу збуреної зони на області слоя і плазми, що спрощує обчислення.
0 комментариев