Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20]

Проектирование адиабатной выпарной установки термического обессоливания воды
Анализ состояния вопроса и обоснование актуальности темы Выбор типа выпарной установки и их классификация Анализ действующей схемы получения деминерализованной воды на АО “Акрон” и возможностей применения схемы с адиабатной выпарной установкой Расчёт адиабатной выпарной установки Определим расход рассола, поступающего в первую камеру испарения G Находим количество оборотной воды, необходимое для конденсации паров парогазовой смеси оттяжек в каждом из конденсаторов Удельная производительность установки по дистилляту d Определим температурный перепад в седьмой ступени Найдём площади теплопередающих поверхностей конденсаторов оттяжек парогазовой смеси из ступеней испарения полагая, что конденсируется весь пар Расчёт сепарационного устройства и нахождение ожидаемого качества дистиллята Уточнённое количество труб в пучке составит n=n1´n2=46´48 =2208 шт Уточнённое количество труб в пучке составит Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20] Компоновка и основные размеры установки Коэффициент эжекции u=9 Выбор насосов Электротехническая часть Расчёт электрических нагрузок Трансформатор мощности подключён к распределительному щиту 6 кВ кабелем с алюминиевыми жилами, проложенным по воздуху Найдём сопротивление трансформатора по его номинальным характеристикам Таким образом, выбранный выключатель удовлетворяет условиям динамической устойчивости и является термически стойким Текущие расходы на содержание установки составляют в ценах на сегодняшний день Санитарно-гигиенические факторы условий труда Лк - при комбинированном освещении Разновидности опасных и вредных факторов Падение предметов с высоты Возможная причина возникновения взрыва
159223
знака
27
таблиц
11
изображений

3.2.4 Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20]

3.2.4.1 Принимаем уровень жидкости в первой камере испарения равный Hс1=0,5 м.

3.2.4.2 Высота щели перепускного устройства из первой ступени во вторую составляет HB

HB=0,476´Hc1=0,476´0,5=0,238 м.

3.2.4.3 Высота перегородки в камере испарения составит HA1

HA1=0,75´Hc1=0,75´0,5=0,375 м.

3.2.4.4 Расстояние от точки входа рассола в камеру до перегородки l0


l0=0,15´L=0,15´4,6=0,69 м,

где L=4,6 м – длина камеры испарения определённая ранее.

3.2.4.5 Площадь сечения перепускного устройства составляет Fпер.

Fпер=HB´B=0,238´6=1,428 м2,

где B=6 м – длина камеры испарения.

3.2.4.6 Для данного типа переточного устройства находим величину коэффициента гидравлического сопротивления по диаграмме 4-14 на стр. 124 для отношения F/F0 =0,35 [7] z=10.

3.2.4.7 Находим скорость истечения рассола из первой ступени во вторую из уравнения неразрывности w1


где r1=962,82 кг/м3 – плотность воды при температуре в первой камере испарения по таблице 2-1 [18].

3.2.4.8 По формуле (7-44) [27] находим высоту столба жидкости во второй камере испарения Hс2


где r2=967,34 кг/м3 – плотность рассола при температуре во второй ступени по таблице 2-1 [18].

3.2.4.9 Высота перегородки во второй камере испарения составит HA2

HA2=0,75´Hc2=0,75´0,597=0,448 м.

3.2.4.10 Аналогично находим высоту перегородки и уровней жидкости в остальных камерах испарения, принимая площадь сечения перепускного устройства равной во всех ступенях

3.2.4.10.1 Находим скорость истечения рассола из второй ступени в третью из уравнения неразрывности w2


3.2.4.10.2 Высота столба жидкости в третьей камере испарения Hс3 по формуле (7-44) [27]

где r3=971,63 кг/м3 – плотность рассола при температуре в третей ступени по таблице 2-1 [7].


3.2.4.10.3 Высота перегородки в третьей камере испарения составит HA3

HA3=0,75´Hc3=0,75´0,717=0,538 м.

3.2.4.10.4 Скорость истечения рассола из третьей ступени в четвёртую из уравнения неразрывности w3


3.2.4.10.5 Высота столба жидкости в четвёртой камере испарения Hс4 по формуле (7-44) [27]


где r4=975,71 кг/м3 – плотность рассола при температуре в четвёртой ступени по таблице 2-1 [7].

3.2.4.10.6 Высота перегородки в четвёртой камере испарения составит HA4

HA4=0,75´Hc4=0,75´0,875=0,656 м.

3.2.4.10.7 Скорость истечения рассола из четвёртой ступени в пятую из уравнения неразрывности w4


3.2.4.10.8 Высота столба жидкости в пятой камере испарения Hс5 по формуле (7-44) [27]


где r5=979,54 кг/м3 – плотность рассола при температуре в пятой ступени по таблице 2-1 [18].

3.2.4.10.9 Высота перегородки в пятой камере испарения составит HA5

HA5=0,75´Hc5=0,75´1,056=0,792 м.

3.2.4.10.10 Скорость истечения рассола из пятой ступени в шестую из уравнения неразрывности w5


3.2.4.10.11 Высота столба жидкости в шестой камере испарения Hс6 по формуле (7-44) [27]


где r6=983,19 кг/м3 – плотность рассола при температуре в шестой ступени по таблице 2-1 [18].

3.2.4.10.12 Высота перегородки в шестой камере испарения составит HA6

HA6=0,75´Hc6=0,75´1,260=0,945 м.


3.2.4.10.13 Скорость истечения рассола из шестой ступени в седьмую из уравнения неразрывности w6

3.2.4.10.14 Высота столба жидкости в седьмой камере испарения Hс7 по формуле (7-44) [27]


где r7=986,46 кг/м3 – плотность рассола при температуре в седьмой ступени по таблице 2-1 [7].

3.2.4.10.15 Высота перегородки в седьмой камере испарения составит HA7

HA7=0,75´Hc6=0,75´1,487=1,115 м.

3.2.4.10.16 Скорость истечения рассола из седьмой ступени в восьмую из уравнения неразрывности w7


3.2.4.10.17 Высота столба жидкости в восьмой камере испарения Hс8 по формуле (7-44) [27]


где r8=989,55 кг/м3 – плотность рассола при температуре в восьмой ступени по таблице 2-1 [18].

3.2.4.10.18 Высота перегородки в восьмой камере испарения составит HA8

HA8=0,75´Hc8=0,75´1,736=1,302 м.

3.2.4.10.19 Скорость истечения рассола из восьмой ступени в девятую из уравнения неразрывности w8


3.2.4.10.17 Высота столба жидкости в девятой камере испарения Hс9 по формуле (7-44) [Таубман]


где r9=992,26 кг/м3 – плотность рассола при температуре в девятой ступени по таблице 2-1 [7].

3.2.4.10.18 Высота перегородки в девятой камере испарения составит HA9

HA9=0,75´Hc9=0,75´2,008=1,506 м.

3.2.5 Из приведённых расчётов видно, что выбранный тип перепускного устройства обеспечивает частичное гашение существующего перепада давлений между ступенями. Уровень испаряемого рассола в камерах равномерно повышается с Hс1=0,50 м до Hс9=2,008 м.

Гасить напор между ступенями полностью нельзя, так как в низкотемпературных ступенях трудно обеспечить свободное истечение рассола. В этом случае движущая сила процесса парообразования будет значительно ниже.



Информация о работе «Проектирование адиабатной выпарной установки термического обессоливания воды»
Раздел: Физика
Количество знаков с пробелами: 159223
Количество таблиц: 27
Количество изображений: 11

0 комментариев


Наверх