2.1 Фаза отключения

 

В положении «включено» (рис. 2.1) буферная пружина 5 сжата, а отключающая 4 – растянута. Они стремятся повернуть коромысло по часовой стрелке. Тяга 7 растянута, а шатун 9 и кривошип 10 сжаты. Щека 11 опирается на фиксатор 13.

При повороте фиксатора 13 против часовой стрелки вокруг оси О5 (вручную или с помощью электромагнита, который на схеме не показан) щека 11 освобождается и под действием силы со стороны кривошипа 10 поворачивается вокруг оси О4, сжимая пружину 12. При этом шарнир А перемещается влево по торцу опорной скобы до тех пор, пока не срывается с него и падает вниз. Коромысло 8 и коромысло 3 поворачиваются по часовой стрелке, поднимая подвижные контакты 2. После размыкания контактов пружина 5 садится на свои упоры, а механизм движется под действием пружины 4. В конце поворота коромысла 3 включается в работу демпфер 6, который останавливает разогнавшийся механизм, поглощая его кинетическую энергию.

После срыва шарнира А с торца скобы щека 11 под действием пружины 12 возвращается в исходное положение. Фиксатор 13 под действием пружины 14 поворачивается по часовой стрелке и фиксирует щеку в исходном положении. Выключатель находиться в положении «отключено» и готов к включению.

2.2 Фаза включения

Включение производится перемещением вверх штока 17 (рис.2.1), приводимого в движение электромагнитным, пневматическим или гидравлическим двигателем. Поднимая вверх шарнир А, шток поворачивает кривошип 10 четырехзвенника О1АВО2 вокруг временно неподвижной оси О1. При этом коромысло 8 и коромысло 3 поворачиваются против часовой стрелки, опуская стержни 2 до полного входа их в розеточные контакты 1. Правое плечо коромысло 3 натягивает отключающую пружину 4 и сжимает буферную пружину 5.

Перемещаясь вверх, шарнир А отжимает вправо опорную скобу 15 под действием пружины 16 возвращается назад, запирая механизм в положении «включено». Шток 17 опускается вниз. Механизм готов к отключению.

Рассмотрев работу механизма, видим, что привод выключателя необходим только в фазе включения и его назначение состоит в преодолении сил отключающей и буферной пружин, сил трения и сил инерции. Поэтому рассчитать и спроектировать привод можно, не рассматривая фазу отключения, в которой движение всего механизма осуществляется за счет потенциальной энергии отключающей и буферной пружин.


3. Определение геометрических параметров привода

 

Целью данного раздела является определение геометрических параметров привода. При проектировании передаточных механизмов учитывают два основных фактора:

1. Проворачиваемость звеньев, т. е. возможность непрерывного перехода ведущего звена (кривошипа) из начального положения в конечное.

2. Углы давления, т. е. углы между направлением действия силы и вектором скорости соответствующей ведомой кинематической пары, за весь цикл работы механизма не должны превышать допускаемых значений. При увеличении этих углов в механизме возрастают нагрузки, увеличиваются потери энергии на трение (т. е. снижается КПД).

Механизм привода осуществляет преобразование прямолинейного движения штока двигателя во вращающее движение коромысла выключателя при включении, а также обеспечивает согласование силовых характеристик двигателя и потребления энергии. Для построения симметричного четырёхзвенника (рис. 3.1) рассчитаем необходимые параметры, зададим значения углов: При выборе углов ψ0,φ0 учитывается: что при увеличении этих углов возрастают силы сопротивления движению в начале и конце фазы включения, а при уменьшении этих углов растут габариты передачи.

Окончательное значение линейных размеров четырёхзвенника может быть установлено лишь после силового расчёта, когда из условий прочности будут найдены диаметры шарниров в точках А, В, О2 и оценка возможности конструктивного выполнения механизма в пределах найденных габаритов.

3.1 Проектирование шарнирного четырёхзвенника

Полный ход штока: hш=H/3 (3.1)

hш=280/3=93.33 (мм);

радиус кривошипа О1А: RA=hш/2*sin(φ0) (3.2)

Ra=93.33/2*sin(30)=93.33 (мм);

радиус кривошипа O2B: RB =RA*cos(φ0) (3.3)

RB=93.33*cos(30)=68,43 (мм);

длины апофем: аа=Ra*cos(φ0) (3.4)

aB=RB*cos(ψ0) (3.5)

aa=93.33*cos(30)=80.83 (мм);

aB=68.43*cos(43)=50 (мм);

длина шатуна: Lш=p*Ra (3.6)

Lш=1.45*93.33=135.28 (мм);

длина О1О2:  (3.7)

где Lш –длина шатуна АВ;

аа, аВ- длины апофем;

l0=(мм);

Полученные размеры четырёхзвенника округляем по ГОСТу 66636-69 и строят в масштабе µL (рис 3.1).

Округлив по ГОСТу 66636 - 69 получим:

Ra=95 (мм), RB=67 (мм), Lш=140 (мм).

Масштаб µL определяется из соотношения:

Ra=µL*О1А (3.8)

где О1А- длина, выбирается произвольно тогда получим

µL=Ra/O1A (3.9)

µL=95/47.5=0.002 (м/мм);

Длины звеньев АВ, О2В, О1О2, для построения четырёхзвенника определяются из выражении:

AB=Lш/µL (3.10)

AB=140/0.002=70 (мм);

О2В=RB/µL (3.11)

O2B=67/0.002=33.5 (мм).



Информация о работе «Проектирование масляного выключателя»
Раздел: Физика
Количество знаков с пробелами: 28025
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
82374
14
18

... BК £ Iтерм2 ×tтерм Выбор разъединителей. Разъединители используют для включения и отключения обесточенных участков электрической цепи под напряжением. Выбор разъединителей производится по тем же параметрам что и выключатели, кроме условия по отключающей способности. [3] В соответствии с перечисленными условиями (1.1 - 1.5) выбираем на стороне 10 кВ разъединитель РЛНД - 10/200 ...

Скачать
149476
14
8

... ОПН. ОПН устанавливается вместо РВ на опорах ВЛ в местах с ослабленной изоляцией, в начале и конце защищенного подхода перед подстанцией на опорах вокруг пересечений ВЛ, на длинных переходах ВЛ и т.д. На первый взгляд применение ОПН представляется простым и эффективным решением задачи по ограничению перенапряжений. Исключение из ограничителя коммутирующих искровых промежутков повышает надежность ...

Скачать
122296
27
5

... либо полным, активным или реактивным током. Расчет нагрузок городской сети включает определение нагрузок отдельных потребителей (жилих домов, общественных зданий, коммунально-бытовых предприятий и т.д.) и элементов системы электроснабжения (распределительных линий, ТП, РП, центров питания и т.д.) Расчётную нагрузку грепповых сетей освещения общедомовых помещений жилых зданий (лестничных клеток, ...

Скачать
93223
8
8

... аварийного режима к.з. 1.2  Структурная схема тяговой подстанции Долбина В данном дипломном проекте предлагается рассмотреть модернизацию тяговой промежуточной подстанции с питающим напряжением 110 кВ. В Белгородской дистанции электроснабжения имеется 9 тяговых подстанций постоянного тока, 8 из которых питаются от ЛЭП-110 кВ, в том числе и тяговая подстанция «Долбина». Тяговая подстанция ...

0 комментариев


Наверх