Оглавление.

1.  Введение……………………………………………………………..2

2.  Фазовые переходы первого и второго рода………………………..4

3.  Идеальный газ……………………………………………………….7

4.  Реальный газ………………………………………………………....8

5.  Молекулярно – кинетическая теория критических явлений….….9

6.  Сверхтекучесть……………………………………………………..11

7.  Сверхпроводимость………………………………………………..13

7.1   Открытие сверхпроводимости………………….…...13

7.2   Электрон – фононное взаимодействие……………..14

7.3   Сверхпроводники первого и второго рода………...16

7.4   Рецепт изготовления сверхпроводника…………….17

7.5   Техника безопасности……………………………….18

7.6   Эффект Майснера……………………………………20

8.  Заключение………………………….……………………….22

9.  Список литературы………………………………………….25


1.  Введение.

 

Фазами называют однородные различные части физико-химических систем. Однородным является вещество, когда все параметры состояния вещества одинаковы во всех его объемах, размеры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях.

Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний – жидком, твердом или газообразном. В зависимости от внешних условий может находиться в одной фазе, либо сразу в нескольких фазах. В окружающей нас природе мы особенно часто наблюдаем фазовые переходы воды. Например: испарение, конденсация. Существуют такие условия давления и температуры, при которых вещество находится в равновесии в различных фазах. Например, при сжижении газа в состоянии равновесия фаз объем, может быть каким угодно, а температура перехода связана с давлением насыщенного пара. Температуры, при которых происходят переходы из одной фазы в другую, называются температурами перехода. Они зависят от давления, хотя и в различной степени: температура плавления – слабее, температура парообразования и сублимации – сильнее. При нормальном и постоянном давлении переход происходит при определенном значении температуры, и здесь имеют место точки плавления, кипения и сублимации (или возгонки.). Сублимация - это переход вещества из твердого состояния в газообразное можно наблюдать, например, в оболочках кометных хвостов. Когда комета находится далеко от солнца, почти вся ее масса сосредоточена в ее ядре, имеющем размеры 10-12 километров. Ядро, окруженное небольшой оболочкой газа – это так называемая голова кометы. При приближении к Солнцу ядро и оболочки кометы начинают нагреваться, вероятность сублимации растет, а десублимации – уменьшается. Вырывающиеся из ядра кометы газы увлекают за собой и твердые частицы, голова кометы увеличивается в объеме и становится газопылевой по составу.


2.  Фазовые переходы первого и второго рода.

Фазовые переходы бывают нескольких родов. Изменения агрегатных состояний вещества называют фазовыми переходами первого рода, если:

1)Температура постоянна во время всего перехода.

2)Меняется объем системы.

3) Меняется энтропия системы.

Чтобы произошел такой фазовый переход, нужно данной массе вещества пообшить определенное количество тепла, соответствующего скрытой теплоте превращения. В самом деле, при переходе конденсированной фазы в фазу с меньшей плотностью нужно сообщить некоторое количество энергии в форме теплоты, которое пойдет на разрушение кристаллической решетки (при плавлении) или на удаление молекул жидкости друг об друга (при парообразовании). Во время преобразования скрытая теплота пойдет на преобразование сил сцепления, интенсивность теплового движения не изменится, в результате температура останется постоянной. При таком переходе степень беспорядка, следовательно, и энтропия, возрастает. Если процесс идет в обратном направлении, то скрытая теплота выделяется. К фазовым переходам первого рода относятся: превращение твердого тела в жидкое (плавления) и обратный процесс (кристаллизация), жидкого - в пар (испарение, кипение). Одной кристаллической модификации - в другую (полиморфные превращения). К фазовым переходам второго рода относится: переход нормального проводника в сверхпроводящее состояние, гелий-1 в сверхтекучий гелий-2, ферромагнетика – в парамагнетик. Такие металлы, как железо, кобальт, никель и гадолиний, выделяются своей способностью сильно намагничиваются и долго сохранять состояние намагниченности. Их называют ферромагнетиками. Большинство металлов (щелочные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничиваются и не сохраняют это состояние вне магнитного поля – это парамагнетики. Фазовые переходы второго, третьего и так далее родов связаны с порядком тех производных термодинамического потенциала ∂ф, которые испытывают конечные измерения в точке перехода, Такая классификация фазовых превращений связана с работами физика - теоретика Пауля Эрнеста (1880 -1933). Так, в случае фазового перехода второго рода в точке перехода испытывают скачки производные второго порядка: теплоемкость при постоянном давлении Cp=-T(∂ф2/∂T2), сжимаемость β=-(1/V0)(∂2ф/∂p2), коэффициент теплового расширения α=(1/V0)(∂2ф/∂Tp), тогда как первые производные остаются непрерывными. Это означает отсутствие выделения (поглощения) тепла и изменения удельного объема (ф - термодинамический потенциал).

Состояние фазового равновесия характеризуется определенной связью между температурой фазового превращения и давлением. Численно эта зависимость для фазовых переходов даётся уравнением Клапейрона-Клаузиуса: Dp/DT=q/TDV. Исследования при низких температурах – очень важный раздел физики. Дело в том, что таким образом можно избавиться от помех связанных с хаотическим тепловым движением и изучать явления в “чистом” виде. Особенно важно это при исследовании квантовых закономерностей. Обычно из-за хаотического теплового движения происходит усреднение физической величины по большому числу её различных значений и квантовые скачки “смазываются”.

Низкие температуры (криогенные температуры), в физике и криогенной технике диапазон температур ниже 120°К (0°с=273°К); работы Карно (работал над тепловым двигателем) и Клаузиуса положили начало исследованиям свойств газов и паров, или технической термодинамике. В 1850 году Клаузиус заметил, что насыщенный водяной пар при расширении частично конденсируется, а при сжатии переходит в перегретое состояние. Особый вклад в развитие этой научной дисциплины внес Реню. Собственный объем молекул газа при комнатной температуре составляет примерно одну тысячную объема, занимаемого газом. Кроме того, молекулы притягиваются друг к другу на расстояниях, превышающих те, с которых начинается их отталкивание.



Информация о работе «Реальные системы и фазовые переходы»
Раздел: Физика
Количество знаков с пробелами: 35727
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
17401
0
1

... равны удельным значениям энтропии, взятой с обратным знаком, и объеме: (4.30) Если в точках, удовлетворяющих фазовому равновесию: , первые производные химического потенциала для разных фаз испытывают разрыв: , (4.31) говорят, что термодинамическая система испытывает фазовый переход I-го рода. Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, ...

Скачать
174397
8
0

... от переподъемов, нулевую и максимальную защиты. -  предусматривать остановку сосудов в промежуточных точках ствола. световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера. Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного ...

Скачать
17111
0
11

... = 44,5 см, c = 12 см, а=20 см, l=8 см. Силовое действие магнитной системы оценивалось по величине равной произведению модуля поля Н на его градиент. Было получено, что распределение модуля поля Н рассматриваемой нами магнитной системы характеризуется ярко выраженной угловой зависимостью. Поэтому расчет модуля поля Н проводился с шагом в 1° для точек, расположенных на двух разных дугах для всего ...

Скачать
13568
0
1

... системы состоит в получении ее “фазового портрета” (Волькенштейн, 1978). Он дает возможность выявить стационарные состояния системы и характер ее динамики при отклонении от них. Метод фазовых портретов применяется в технике для анализа и предсказания поведения физических систем различной сложности и в математической экологии для анализа динамики численности популяций (Волькенштейн, 1978; Свирежев ...

0 комментариев


Наверх