7.6 Эффект Майснера.
Директор лаборатории низких температур Баварской Академии Наук. В 1932 году совместно с Р. Хольман наблюдал Эффект туннелирования между двумя сверхпроводниками, совместно с другим обнаружил эффект, названный его именем. Эффект Майснера, вытеснение магнитного поля из металлического проводника при его переходе в сверхпроводящее состояние открыт в 1933 году немецкими физиками В. Майснером и Р. Оксенфельдом. До 1993 года считалось, что сверхпроводник – это и есть идеальный проводник. Но вот Майснер и Оксенфельд поставили опыт и обнаружили, что это не так! Оказалось, что при Т < Ткр поле в образце равно нулю (В=0, где В – индукция) всегда, независимо от пути перехода к условию Т < Ткр при наличии внешнего магнитного поля. Это было чрезвычайно важное открытие. Ведь если В=0 независимо от предыстории образца, то это равенство можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при Н < Нст. Но тогда можно рассматривать переход в сверхпроводящее состояние и использовать для исследования сверхпроводящей фазы вещества всю мощь термодинамического подхода.
8. Заключение.
Сверхпроводимость – явление занимательное. Изучая необычные и впечатляющие свойства сверхпроводников, физики глубже проникают в тайны устройства материи. Инженеры стремятся сделать сверхпроводники своим оружием заставить их работать. Сверхзадача для сверхпроводников – передача их полезных свойств объектам новой техники. Сверхпроводники – это новый класс проводниковых материалов с экстраординарными свойствами, ибо у них отсутствует омическое сопротивление. Плотности токов, пропускаемых по сверхпроводникам, можно увеличить до 103-104А/мм2, то есть они будут в тысячи раз больше, чем по меди или алюминию. Сверхпроводящие материалы не только широко используются при конструировании магнитов в исследовательских целях, но и имеют большое практическое применение. Ожидается, что в недалеком будущем на смену громоздким мачтам электропередачи придут подземные электропроводящие линии. В Японии в 1988 году построен опытный образец железной дороги со сверхпроводящей магнитной подвеской, пока ее длина 8 километров. Суть ее в том, чтобы поезд (либо вагон) двигался без колес. Держать же вагон над дорогой и двигать его вперед должно магнитное поле, которое создают установленные в днище вагона сверхпроводящие магниты. Железнодорожный путь представляет совой полосу из уложенных перпендикулярно движению металлических стержней, в которых наводится управляемая с помощью ЭВМ волна тока, бегущая под вагоном и перед вагоном. Взаимодействие тока с магнитным полем одновременно тянет вагон вперед и поддерживает просвет между дном вагона и дорогой.
Сверхпроводящий магнит, сверхпроводящий магнитометр прибор для измерения магнитных полей и их градиентов, (векторов g,показывающих наискорейшего возрастания данного скалярного поля φ (Р), где Р – точка пространства; обозначается g=grad φ (Р).) действие которых основано на эффекте Джозефсона. Протекание сверхпроводящего тока через тонкий (~10А) слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона). Эффект предсказал Б. Джозефсон (1962 г.). На его основе создан сверхпроводящий квантовый интерферометр (сквид), с помощью которого уточнены значения ряда фундаментальных физических постоянных. Эффект Джозефсона используется в криогенных приборах; контакты Джозефсона применяются также в качестве быстродействующих логических элементов ЭВМ. В 1962 году появилась статья никому до этого не известного автора Б. Джозефсона, в которой теоретически предсказывалось существование двух удивительных эффектов. Эти эффекты следовало ожидать в туннельных сверхпроводниковых контактах. Первый эффект заключается в том, что через туннельный переход возможно протекание сверхпроводящего (бездиссипативного) тока (сверхтока). Предсказывалось, что критическое значение этого тока будет весьма причудливым образом зависеть от внешнего магнитного поля. Если ток через такой переход станет источником высокочастотного электромагнитного излучения. Это – второй эффект Джозефсона. Вскоре доказано экспериментально. Чувствительность сверхпроводящих магнитометров достигает 10-15 Тл (10-15 Гс). Нобелевский комитет присудил премию по физике 2003 года двум русским ученым и американцу за объяснение феноменов сверхтекучести и сверхпроводимости. Члены Нобелевского комитета, заседающие в Шведской королевской академии наук, отметили наградой российского профессора Виталия Гинзбурга из физического института имени Лебедева РАН (Москва, Россия), российского же профессора Алексея Абрикосова из Аргоннской национальной лаборатории (Аргонн, Иллинойс, США) и профессора Энтони Дж. Леггетта (университет Иллинойса, Урбана, Иллинойс, США). Как написано в официальном пресс-релизе Нобелевского комитета, они внесли решающий вклад в объяснение двух феноменов квантовой физики: сверхпроводимости и сверхтекучести. В этом году размер премии составил $1,2 млн. Абрикосов Алексей Алексеевич. Родился 25 июня 1928 года, через три года после окончания второй мировой войны стал выпускником МГУ им. Ломоносова. После этого в течение 17 лет проработал в Институте физических проблем АН СССР.
Список литературы:
1. Базаров И.П. «Термодинамика» издание третье Москва изд. «Высшая школа» 1983 год.
2. Бланке А.Я. «Физика» учебное пособие для студентов нефизических специальностей вузов Харьков изд. «Каравелла»1996год.
3. Гинзбург В.Л., «Сверхпроводимость». Москва: педагогика 1990 год.
4. Дубнищева Т.Я. «Концепции современного естествознания» Новосибирск, 1997год.
5. Кабардин О.Ф. «Физика» Москва, изд. «Просвещение» 1991год.
6. Околотин В. «Сверхзадача для сверхпроводников» изд. «Знание» Москва 1983 год.
7. Ремизов А.Н. «Курс физики, электроники и кибернетики» Москва изд. «высшая школа» 1982 год.
8. Савельев И.В. «Курс общей физики» том 3. Москва изд. «Наука» 1982 год.
9. Солимар Л., Уолш Д. «Лекции по электрическим свойствам материалов» Москва изд. «Мир» 1991 год.
10. Чуянов В.А. «Энциклопедический словарь юного физика» второе изд., исправленное и дополненное – М.: Педагогика, 1991год.
11. Шмидт В.В. «Введение в физику сверхпроводников» Москва изд. «Наука» 1982 год.
12. Яворский Б.М., Детлаф А.А. «Справочник по физике» Москва изд. «Наука» 1985 год.
13. Яворский Б.М. «Курс физики» I том изд. «высшая школа» Москва 1965год.
14. Новый энциклопедический словарь. Москва, «Большая Российская энциклопедия» изд. «Рипол Классик» 2001год.
15. Все 100000 рефератов «ALEX SOFT»
... равны удельным значениям энтропии, взятой с обратным знаком, и объеме: (4.30) Если в точках, удовлетворяющих фазовому равновесию: , первые производные химического потенциала для разных фаз испытывают разрыв: , (4.31) говорят, что термодинамическая система испытывает фазовый переход I-го рода. Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, ...
... от переподъемов, нулевую и максимальную защиты. - предусматривать остановку сосудов в промежуточных точках ствола. световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера. Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного ...
... = 44,5 см, c = 12 см, а=20 см, l=8 см. Силовое действие магнитной системы оценивалось по величине равной произведению модуля поля Н на его градиент. Было получено, что распределение модуля поля Н рассматриваемой нами магнитной системы характеризуется ярко выраженной угловой зависимостью. Поэтому расчет модуля поля Н проводился с шагом в 1° для точек, расположенных на двух разных дугах для всего ...
... системы состоит в получении ее “фазового портрета” (Волькенштейн, 1978). Он дает возможность выявить стационарные состояния системы и характер ее динамики при отклонении от них. Метод фазовых портретов применяется в технике для анализа и предсказания поведения физических систем различной сложности и в математической экологии для анализа динамики численности популяций (Волькенштейн, 1978; Свирежев ...
0 комментариев