7 Расчёт защиты воздушных линий Л1, Л2
В связи с тем, что сеть образована параллельными линиями и имеет двухстороннее питание, то примем к установке следующие защиты:
1) основная от всех видов коротких замыканий – поперечная дифференциальная направленная защита;
2) дополнительная к основной от междуфазных коротких замыканий – токовая отсечка без выдержки времени, отдельная для каждой параллельной цепи;
3) резервная от междуфазных коротких замыканий – суммарная максимальная токовая защита параллельных цепей;
4) защита от однофазных коротких замыканий на землю.
7.1 Поперечная дифференциальная направленная защита
1) Защита выполняется с помощью токовых реле РСТ 13, которые включаются на разность токов параллельных цепей. Для определения поврежденной цепи последовательно с обмоткой токового реле РСТ 13 включается обмотка тока реле направления мощности РМ 11, а обмотка напряжения этого реле включается во вторичную обмотку трансформатора напряжения, установленного на шинах А.
2) Максимальный рабочий ток линии при повреждении на другой линии:
, (7.1)
где – передаваемая мощность по линиям Л1 и Л2, ВА;
– напряжение линий Л1 и Л2, В.
А.
Принимаем к установке трансформатор тока ТФЗМ-220Б-I-300-0,5/10Р/10Р/10Р: А; А. Коэффициент трансформации трансформатора тока
.
В каждой цепи линии устанавливаются три трансформатора тока, включенные по схеме неполной звезды, коэффициент схемы .
Примем к установке трансформатор напряжения типа НКФ-220-58У1:
В,
В. Коэффициент трансформации трансформатора напряжения:
.
3) Ток срабатывания защиты определяется двумя условиями:
а) отстройкой от тока небаланса
, (7.2)
где – коэффициент апериодической составляющей для токового реле;
– коэффициент однотипности для идентичных трансформаторов тока;
– класс точности трансформаторов тока.
А.
Ток срабатывания защиты
, (7.3)
здесь – коэффициент отстройки.
А.
б) отстройкой от максимального рабочего тока при отключении одной из параллельных линий с противоположного конца.
Ток срабатывания защиты:
, (7.4)
где – коэффициент отстройки;
– максимальный рабочий ток, который был определен по выражению (7.1).
А.
Принимаем к выполнению большее из двух значений, то есть А.
4) Чувствительность защиты определяется по минимальному току двухфазного короткого замыкания в двух случаях:
а) при повреждении в середине одной из параллельных цепей (рисунок 2)
Рисунок 2
А – ток при точке двухфазного короткого замыкания на шинах В при питании от системы G1;
А - ток при точке двухфазного короткого замыкания на шинах А при питании от системы G2.
Ток в неповрежденной цепи находится как четверть разницы этих токов:
А. (7.5)
Токи в поврежденной цепи:
от шин А к точке короткого замыкания А;
от шин В к точке короткого замыкания А.
Коэффициент чувствительности защит с обоих концов одинаковый:
. (7.6)
б) при повреждении в конце одной из линий, когда она отключена с одной стороны каскадным действием защиты (рисунок 3).
Рисунок 3
Питание от системы G2 не учитываем, тогда коэффициент чувствительности
. (7.7)
Коэффициент чувствительности больше нормированного в обоих случаях.
5) Ток срабатывания реле:
А. (7.8)
Принимаем к установке реле РСТ 13-19, у которого ток срабатывания находится в пределах .
Определим сумму уставок:
. (7.9)
Принимаем сумму уставок .
Найдем ток уставки реле:
А.
6) Длина зоны каскадного действия (вблизи шин В):
, (7.10)
здесь – длина линий Л1 и Л2, км.
Длина зоны каскадного действия лежит в допустимых пределах.
Длина мертвой зоны по органу направления мощности РМ 11 (вблизи шин А) может быть найдена из упрощенного выражения (3.11) (без учета активного сопротивления линии и без учета подпитки с противоположной стороны), исходя из минимального напряжения срабатывания реле РМ 11 В.
, (7.11)
здесь – коэффициент трансформации трансформатора напряжения;
Ом/км – удельное индуктивное сопротивление линии;
.
Длина мертвой зоны также лежит в допустимых пределах.
... , трансформаторы которой выбираются с учетом взаимного резервирования; · Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР). Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС На рис. 2.1. в ...
... задаются в поле задания уставок. 6. Безопасность и экологичность проекта В основной части дипломного проекта рассмотрены вопросы, связанные с модернизацией релейной защиты РУ-27,5 кВ тяговой подстанции Заудинск ВСЖД. Наличие на подстанции высоковольтного оборудования и значительных по величине токов определяет выбор темы, и содержание раздела "Безопасность и экологичность проекта", связанных ...
... : мм2 < 10 мм2, где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36). Допустимый ток термической стойкости кабеля для предполагаемого времени действия 0.1 с основной релейной защиты (МТО ) на Q13 равен: кА. 1.4 Выбор кабелей, питающих асинхронные двигатели (АД) М1 и М2, М3 и М4 Номинальный ток АД серии АТД исполнения 2АЗМ1-800/6000УХЛ4 ([6], табл. 4.6): А, где: кВт – ...
... от чрезвычайных ситуаций природного и техногенного характера»; - СНиП; - Стандартом «Безопасность в чрезвычайных ситуациях» (БЧС). Проектирование систем электроснабжение промышленного предприятия проводилась в соответствии с ПУЭ, ПТБ, ПТЭ, на основании ГОСТов, СН и СНиП. 16.1 Обучение и инструктажи работающего персонала по безопасности труда на предприятии Руководители предприятий обязаны ...
0 комментариев