2. Обратные задачи динамики в теории автоматического управления
Теория автоматического управления и регулирования развивалась независимо от возникновения и развития концепций обратных задач динамики. Начиная с первых простейших автоматических регуляторов, инженеры и конструкторы создавали автоматические системы, которые обеспечивали протекание управляемых процессов по желаемым законам. В результате в теории автоматического управления разработано большое число практических приемов и методов, которые успешно применяются при проектировании и создании автоматических систем различного назначения. В основе каждого метода заложены концепции обратных задач динамики управляемых систем.
Действительно, частотные методы расчета и проектирования систем автоматического регулирования и управления основаны на приближении частотных характеристик проектируемой системы к соответствующим характеристикам желаемого вида, т.е. процессы в проектируемой системе должны быть близки к процессам, протекающим в некоторой эталонной системы, отвечающей требованиям технического задания на проектирования.
Расчет параметров систем автоматического регулирования корневыми методами также основан на приближении динамических характеристик проектируемой системы к соответствующим характеристикам некоторой эталонной системы. Мера близости динамических характеристик в таких процедурах расчета определяет соответствие между распределениями корней характеристических уравнений проектируемой и эталонной систем.
В теории автоматического управления широкое развитие получили методы синтеза замкнутых систем, основанные на решении оптимизационных задач с использованием различных функционалов, характеризующих качество процессов управления. Большое число процедур было разработано для параметрической оптимизации систем регулирования по критерию минимума интегральных квадратичных оценок, введенных А.А. Красовским еще в 40-е годы.
По определению интегральными квадратичными оценками рассматриваемой системы являются:
- оценка нулевого порядка,
- оценка первого порядка,
- оценка порядка n,
где x(t) – выходная переменная, характеризующая состояние системы - ее производные; n – порядок системы. Величины постоянны и имеют размерность времени.
Для вычисления интегральных квадратичных оценок разработаны различные приемы и способы, которые можно в учебной литературе по теории автоматического регулирования.
Задача формулируется следующим образом. Задана структура динамической системы; некоторые параметры системы являются варьируемыми, а остальные должны оставаться неизменными. Требуется найти такие значения варьируемых параметров, при которых реализуется минимум какой-либо интегральной квадратичной оценки. Сформулированная задача является задачей параметрической оптимизации динамической системы. Найденные в результате ее решения параметры именуются оптимальными, а систему с такими параметрами называют оптимальной по переходному процессу.
Схема решения задачи параметрической оптимизации в аналитической форме такова. Пусть есть те параметры, которые необходимо определить из условия реализации минимума принятой интегральной квадратичной оценки . Выражение для оценки содержит неизвестные параметры . Оптимальные значения параметров определяются из уравнений . Практически параметрическая оптимизация проводится с применением численных методов, так как в аналитическом виде решение может быть получено в простейших случаях. Выражения для оказываются громоздкими, а уравнения для оптимальных параметров нелинейными.
Однако, как показано в работах А.А. Красовского и А.А. Фельдбаума, оптимальность системы по интегральному квадратичному критерию равносильна тому, что ошибка системы как функция времени подчиняется в процессе управления соответствующему дифференциальному уравнению.
Действительно. Пусть состояние системы характеризуется выходной переменной x(t) и ее производными ). Предполагается, что порядок системы равен n. Пусть в начальный момент
, ,..., (1.1)
Принимается, что собственное движение системы асимптотически устойчиво. Тогда при система стремится к положению равновесия:
(1.14)
Рассмотрим оценку и найдем такую функцию x(t), которая удовлетворяет граничным условиям (1.1), (1.2) и доставляет минимум интегралу . Обозначим через подынтегральное выражение в . Тогда согласно теории вариационного исчисления необходимое условие экстремума (минимума) интеграла будет иметь вид
(1.3)
Это дифференциальное уравнение называется уравнением Эйлера-Пуассона. С учетом выражения для можно найти
и, кроме того,
Следовательно, уравнение (1.3) будет
(1.4)
Таким образом, экстремаль x(t), на которой интеграл обращается в минимум, является решением дифференциального уравнения (1.4) порядка 2n. При этом x(t) должна удовлетворять граничным условиям (1.1) и (1.2). Характеристическое уравнение, отвечающее (1.16), таково:
Оно обладает тем свойством, что его корни попарно симметричны относительно начала координат комплексной плоскости p, т.е. корням , соответствуют корни, . На этом основании решение (1.4) можно записать в виде
(1.5)
где постоянные , должны быть такими, чтобы выполнялись граничные условия.
Пусть для определенности корни таковы, что
, ,
В этом случае постоянные в (1.5) должны быть равными нулю в силу того, что согласно (1.2) при функция и ее производные стремятся к нулю. Таким образом, выражение для экстремали должно быть
. (1.6)
Однако известно, что , определяемая формулой (1.6), есть решение одного дифференциального уравнения n-го порядка
(1.7)
Коэффициенты этого уравнения однозначно выражаются через корни по формулам Виета.
Отметим, что начальными условиями для уравнения (1.7) являются (1.1).
Из приведенного анализа следует, что экстремаль интеграла при граничных условиях (1.1), (1.2) является решением однородного дифференциального уравнения (1.7), порядок которого равен порядку оптимизируемой системы. На этом основании можно заключить, что параметрическая оптимизация системы по критерию минимума интегральной квадратичной оценки выполняется из условия, чтобы выходная переменная x(t) системы в свободном движении изменялась во времени по предписанному закону, определяемому дифференциальным уравнением (1.7). Это в свою очередь означает, что задачу параметрической оптимизации можно рассматривать как обратную задачу динамики, формулируемую следующим образом: динамическая система заданной структуры имеет варьируемые параметры ; требуется найти такие значения этих параметров, при которых движение системы проходит по предписанной траектории, определяемой дифференциальным уравнением вида (1.7).
Практически не всегда оказывается возможным провести параметрический синтез системы из условия, чтобы ее выходная переменная x(t) в точности была равна переменной , которая является экстремалью минимизируемого функционала . В большинстве случаях параметры ищутся из условия наилучшего (в каком-либо смысле) приближения x(t) и . Очень часто в качестве меры приближения используют определенные интегралы:
и другие. Здесь - отклонение выходной переменной оптимизируемой системы от экстремальной кривой ; , - производные по времени; , - положительные числа. Выражение (1.7) представляет собой, по сути дела, также интегральные оценки, записанные для отклонений траектории синтезируемой системы от назначенной.
В прикладных задачах параметрической оптимизации не всегда используются интегральные квадратичные оценки, порядок которых равен порядку дифференциального уравнения оптимизируемой системы. Очень часто параметрический синтез проводят по квадратичным оценкам первого и второго порядка. В таких случаях параметры системы определяются из условия, чтобы выходная переменная x(t) приближалась к решению дифференциального уравнения первого или соответственно второго порядка.
Таким образом, требование оптимальности системы по переходному процессу в смысле минимума интегральной квадратичной оценки равносильно требованию, чтобы выходная переменная системы в ее свободном движении изменялась в соответствии с решением однородного дифференциального уравнения порядка m.
... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...
... относительности (теории тяготения). Исходя из изложенного, в механике пользуются единым термином «масса», определяя массу как меру инертности тела и его гравитационных свойств. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ. РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ Для решения задач динамики точки будем пользоваться одной из следующих двух систем уравнений ...
... закономерностям, независимо от наших знаний о природе явлений. Всякое следствие имеет свою причину. Как и все остальное в физике, понятие детерминизма менялось по мере развития физики и всего естествознания. В 19-м веке теория Ньютона окончательно оформилась и установилась. Существенный вклад в ее становление внес П.С.Лаплас (1749 - 1827). Он был автором классических трудов по небесной механике и ...
... . 5. Получены длительные непрерывные ряды наблюдений интенсивности потока и азимутальных распределений СДВ атмосфериков, которые позволили проследить динамику грозовой активности в мировых грозовых центрах. 5.1. Морской мониторинг показал, что основной вклад в мировую грозовую активность дают континентальные и островные грозовые центры. Вариации интенсивности потока импульсов хорошо ...
0 комментариев