4. За відомими параметрами кола (див. мал.4.7) розрахувати взаємний опір першої та другої вітки.

5. Зробити висновки по роботі.

Література:

[ 1, c.167; 2, c.46; 3, c.78; 4, c.235; 5, c.93,95 ].


Лабораторна робота №5

 

АКТИВНИЙ ДВОПОЛЮСНИК

Мета роботи: експериментально і аналітично перевірити теорему про активний двополюсник.

Теоретичні відомості

Теорема про активний двополюсник широко застосовується при аналізі та розрахунку електричних кіл.

Активним двополюсником називають будь-яке електричне коло, що має джерела електричної енергії і має два полюси підключення інших кіл, пристроїв чи елементів. Умовне зображення активного двополюсника зображено на мал.5.1.

Напругу на розімкнених полюсах а-b активного двополюсника називають напругою холостого ходу і позначають Uхх.

Струм, що протікає через закорочені полюси активного двополюсника, називають струмом короткого замикання і позначають Ікз.

Вхідним опором активного двополюсника називають опір відносно полюсів цього ж двополюсника після виведення з нього всіх джерел енергії.

Теорема про активний двополюсник стверджує, що будь-який активний двополюсник можна замінити еквівалентним джерелом (еквівалентним генератором), ЕРС якого рівна напрузі холостого ходу активного двополюсника, а внутрішній опір рівний його вхідному опору.

В графічній формі зміст теореми проілюстровано на мал.5.1, де праворуч показаний еквівалентний генератор, що замінює активний двополюсник (символ “~” означає еквівалентність).

З теореми про активний двополюсник витікає, що:

Розрахунок кіл, заснований на теоремі про активний двополюсник, називають методом еквівалентного генератора і застосовують для розрахунку струмів в окремих вітках кола.

Суть методу еквівалентного генератора полягає в тому, що вітку, в якій шукають струм, виділяють, а вся інша частина кола по відношенню до виділеної вітки розглядається як активний двополюсник. Замінившм активний двополюсник еквівалентним генератором, знаходять струм в виділеній вітці.

На мал.5.2 зображений еквівалентний генератор, що замінює активний двополюсник, і вітку з опором rн , в якій струм навантаження :

 .

Порядок виконання роботи

1.  Зібрати коло згідно схеми (мал.5.3).

2. Розглядаючи коло, обведене на мал.5.3 пунктиром, як

активний двополюсник з полюсами а-b , виміряти напругу холостого ходу і струм короткого замикання.

3. Виміряти струм на виході активного двополюсника при двох значеннях опору навантаження.

4. Вилучити з активного двополюсника ЕРС Е2, виміряти його вхідний опір методом вольтметра-амперметра згідно схеми мал.5.4. Результати вимірювань по п.2-4 занести в табл.5.1.

Обробка результатів дослідів

1. За даними досліду п.2 обчислити внутрішній (вхідний) опір еквівалентного генератора rекв та порівняти його із знайденим в досліді п.4 вхідним опором пасивного двополюсника.

2. За виміряним в п.5 ЕРС і опорам кола (див. мал.5.3) розрахувати величини Uxx, Ікз , І3 і rвх .Результати занести в табл.5.1.

3. Зробити висновки по роботі.

Література:

[ 1, c.180; 2, c.56; 3, c.83; 4, c.239; 5, c.96 ].


Лабораторна робота №6

ПРОСТІ КОЛА ЗМІННОГО СТРУМУ

Мета роботи: визначити активні, реактивні і повні опори і провідності, кути зсуву фаз, перевірити баланс потужностей, побудувати векторні діаграми.

Теоретичні положення

При проходженні синусоїдного струму i=Іmsinwt через коло r, L, C (мал.6.1), згідно з другим законом Кірхгофа, миттєве значення напруги на вході кола

u=ur+uL+uc(6.1)

Напруга ur співпадає по фазі з струмом i, uL випереджує його на кут π/2, а напруга uC відстає від струму на кут π/2.Тому

 

Величина, що входить до рівняння (6.2) – є реактивний опір кола. В залежності від співвідношення між ω, L і C реактивний опір може бути додатнім (при ) і від’ємним (при ).

 Якщо >0, коло має індуктивний характер, якщо <0–ємнісний.

 Формулу (6.2) можна переписати в такому вигляді:

, (6.3)

звідки


, (6.4)

. (6.5)

З (6.4) маємо вираз, аналогічний закону Ома:

Um=zIm. (6.6)

Поділимо обидві частини на  і отримаємо вираз для діючих значень

U=zI, (6.7)

де z=– повний опір послідовно з’єднаних r i .

З (6.4) та (6.5) маємо вирази: r=z cosφ , =z sinφ , (6.8) які свідчать, що r,  i z зв’язані між собою як сторони прямокутного трикутника (мал.6.2), який називається трикутником опорів.

З порівняння виразів u=Umsin(ωt+φ) i i= Imsinωt видно, що при індуктивному характері кола (φ>0) напруга, прикладена до кола, випереджує струм на кут φ (мал.6.3), а при ємнісному відстає від нього (мал.6.4). При паралельному з’єднанні елементів r, L, C (мал.6.5.) зручно оперувати провідностями: активною g, реактивною b та повною у, при чому  

Так само, як і опори, провідності створюють трикутник провідностей (мал.6.6). На ділянці кола, яка складається з послідовно з’єднаних опорів r i  (індуктивного або ємнісного), існують слідуючі співвідношен ня між опорами та провідностями:

 (6.9)


Процеси в колах синусоїдного струму з енергетичної сторони обумовлюються активною Р, реактивною Q, та повною S потужностями.

Активна потужність чисельно дорівнює середній за період швидкості надходження енергії в коло:

. (6.10)

З врахуванням (6.6 – 6.8) отримаємо Р=І2r [Вт].

Реактивна потужність Q=UIsinφ [ВАр] . (6.11)

Повна потужність S=UI [ВА].

Звідси S2=P2+Q2.

Баланс потужностей заснований на законі збереження енергії. Суть його в тому, що сума активних потужностей джерел в колі дорівнює сумі активних потужностей приймачів, а сума реактивних потужностей джерел дорівнює сумі реактивних потужностей приймачів кола.

Синусоїдні функції часу можна зобразити векторами , що обертаються зі швидкістю ω проти годинникової стрілки, проекції яких на вертикальну вісь (при врахуванні кута від горизонталі) дорівнюють миттєвим значенням синусоїдних функцій.

Сукупність векторів напруг та струм в колі називають векторною діаграмою.

На мал.6.7 показана векторна діаграма послідовного r, L, С кола (мал.6.1), побудованого для діючих значень напруг і струмів для випадку L>C . Вектор струму І розташований горизонтально, тобто його початкова фаза прийнята рівною нулю. З напрямком вектору струму співпадає напрямок вектору напруги Ur=Ir. Вектор напруги на індуктивності UL=IL випереджує вектор струму на кут 900, а на ємності відстає на кут 900. Сума векторів напруг Ur, UL, Uc дає вектор напруги на вході кола U, який випереджє вектор струму І на кут φ.

Для розгалуженого кола (мал.6.8) за відомими в результаті розрахунку струмами i, i1, i2 побудову векторної діаграми краще починати з побудови променевої діаграми струмів (мал.6.9). Потім по напрямку вектора струму І відкладають вектор напруги Uаb=Irс , перпендикулярно до нього (в бік відставання)– вектор напруги Uвс=Iс . До отриманої суми векторів напруг Uаb і Ubс додаємо (намагаючись обійти контур а-b-с-d-е-а), направлений по вектору струму І2 вектор напруги Ucd=I2rL і перпендикулярного йому вектора напруги Udе= I2L. Сума векторів напруг Uаb , Ubс , Ucd , Udeзгідно другому закону Кірхгофа дає вектор вхідної напруги U.

Порядок виконання роботи

1. Зібрати коло згідно мал.6.10 з послідовними з’єднаннями приймачів, де А-амперметр на 1-2А, V-вольтметр на 150В, W-ватметр на 150 Вт, ІА, r-активний опір (взяти на стенді r1), rс, C-конденсатор (взяти на стенді C=30мкФ), rL, L- котушка індуктивності (взяти котушку з розімкнутим сталевим осердям).

2. Встановити з допомогою ЛАТРа на вході зібраного кола напругу, вказану викладачем (в межах 70-100В), і виміряти струм, напруги та потужності всього кола і кожного приймача. Результати вимірів перевірити, побудувати векторну діаграму напруг та скласти рівняння балансу потужностей, після чого данні вимірів занести в табл.6.1.

3.  Зібрати одну із схем з послідовно-паралельним з’єднанням тих самих приймачів згідно мал.6.11 – 6.13 (за вказівкою викладача).

4. Встановити з допомогою ЛАТРа на вході зібраного кола напругу, вказану викладачем (в межах 70 –100В), і виміряти напруги і струми в кожній вітці. Результати занести до табл 6.2.

Обробка результатів досліду

1. За данними вимірів досліду п.2 обчислити активні реактивніта повні опори і кути зсуву фаз для кожного приймача та всього кола, а також активну , реактивну і повну провідність всього кола. Результати обчислень занести в табл.6.3

2. Для схеми (мал.6.10) перевірити баланс потужностей.

3. Побудувати в масштабі векторну топографічну діаграму напруг для схеми мал.6.10, впевнитися у справедливості другого закону Кірхгофа.

4. Побудувати у масштабі для своєї схеми (мал.6.11 – 6.13) суміщені векторні діаграми напруг і струмів, впевнитися у справедливості першого і другого законів Кірхгофа. При побудові діаграми використати данні досліду табл.6.2 та розрахункові данні табл.6.3.

5. За даними табл.6.3 розрахувати для своєї схеми струми (мал.6.12 – 6.13) при тій самій напрузі, що і вдосліді п.4. Результати обчислень занести до табл.6.2.

6. Зробити висновки по роботі.

Контрольні питання

1. Що таке активний, реактивний і повний опір кола і як їх виміряти?

2. Як в колі з послідовним з’єднанням r,L,С визначити зсув фаз між вхідними напругою і струмом на частоті 50 Гц?

3. Як за відомою амплітудою напруги на вході кола з послідовним з’єднанням елементів r,L,С визначити амплітуду струму на частоті 50 Гц?

4. Три приймача з’єднані послідовно. Відомі діючі значення струму та напруги, а також кути зсуву фаз на кожному приймачеві. Як знайти діюче значення вхідної напруги і кут зсіву між цими напругою і струмом?

5. Як якісно (до розрахунку струмів) побудувати векторну діаграму розгалужених кіл, які досліджуються в роботі?

Література:

[ 1, c.64; 2, c.71; 3, c.34; 4, c.171; 5, c.109 ].


Лабораторна робота №7

 

КОЛА З ВЗАЄМНОЮ ІНДУКТИВНІСТЮ

 

Мета роботи: дослідним шляхом визначити параметри двох індуктивно зв’язаних котушок при різних з’єднаннях, проілюструвати процеси в індуктивно зв’язаних колах векторними діаграмами.

Теоретичні положення

На мал.7.1 зображені два магнітозв’язані контури; де ψ11– власне магнітне потокозчеплення першого контуру, створене струмом i1; ψ22 – власне магнітне потокозчеплення другого контуру, творене струмом i2 .

Частина потокозчеплення ψ12 першого контуру зчіпляється з другим контуром і називається взаємним потокозчепленням першого контуру з другим; ψ21-взаємне потокощеплення другого контуру з першим. Сумарні потокощеплення відповідно першого та другого контурів:

. (7.1)

Потоки направлені так, що власне і взаємне потокозчеплення складаються. Таке вмикання називається узгодженим. При зміні напрямку одного із струмів вмикання буде зустрічним.

Відомо, що індуктивності котушок

. (7.2)

Відношення взаємних потокозчеплень до викликавших їх струмів, називають взаємною індуктивністю:

 . (7.3)

В третій частині курсу ТОЕ буде показано, що

М1221=М. (7.4)

ЕРС, які наводяться потоками в контурах :

, (7.5)

, (7.6)

де eL, eM– відповідно ЕРС самоіндукції і взаємоіндукції.

При узгодженому вмиканні котушок ці ЕРС сумуються. Також сумуються відповідні їм напруги:

, (7.7)

. (7.8)

Напруга взаємної індукції:

. (7.9)

Для позначення способу вмикання (узгодженого чи зустрічного) котушок на схемі часто затискачі позначають знаком * (мал.7.2).

Якщо струми i1 і i2 входять в одноіменні затискачі, то вмикання узгоджене.

Якщо струм в одній з катушок синусоїдний, наприклад

i=Іmsinwt,


в другій котушці наведеться синусоїдна напруга

,

що випереджує струм i1 на 900. Якщо по другій котушці протікає синусоїдний струм, напругу на другій котушці визначену рівнянням (7.8), можна записати в комплексній формі

U2 = I2 jωL21jωM . (7.10)

Аналогічно для першої котушки

U1 = I1 jωL12jωM . (7.11)

При зустрічному вмиканні котушок напруга uм входить в рівняння зі знаком мінус.

Розглянемо послідовне узгоджене вмикання двох котушок (мал.7.3). Рівняння за другим законом Кірхгофа для контура кола має вигляд

 (7.12)

Перші три складові в правій частині є напруга на першій котушці, а другі три – на другій. В напругу на кожній котушці входить складова  , тому що струм, який проходить по другій котушці, за рахунок магнітного зв’язку наводить напругу на першій котушці , а струм першої котушки наводить таку напругу на другій.

В комплексній формі рівняння (7.12) має вигляд:

U = I [r1+r2+jω(L1+L2 +2M) ] . (7.13)

Еквівалентна індуктивність кола

Lекв=L1+L2+2M.

Векторна діаграма для узгодженого вмикання показана на мал.7.4.

При зустрічному вмиканні складові  в рівнянні (7.12) мають знак мінус. В комплексній формі для зустрічного вмикання

U = I [r1+r2+jω(L1+L2 -2M) ]. (7.14)

Векторна діаграма для зустрічного вмикання показана на мал.7.5.

З рівнянь (7.13) і (7.14) випливає, що реактивний опір при узгодженому у та зустрічному з вмиканні має вигляд

у=ω(L1+L2)+ω2М,

 з=ω(L1+L2)–ω2М, (7.15)

звідки  . (7.16)

Вираз (7.16) дозволяє за дослідними даними у і з знайти М. З того ж виразу видно, що у > з .

Паралельне з’єднання двох магнітозв’язаних котушок, при якому в один вузол з’єднані початки обох котушок, в другий –їх кінці, умовно називають узгодженим паралельним з’єднанням (мал.7.6).

 Умовність є в тому, що ні по фазі, ні по значенню струми в обох котушках, як правило, не співпадають і на протязі деякої частини періода створюються зустрічнонаправлені взаємні магнітні потоки. Та на протязі більшої частини періода струми котушок направлені однаково і магнітні потоки складаються.

Будову векторних діаграм при відомих із дослідів діючих значеннях струмів можна робити так.

Спочатку будуємо діаграму струмів. Задаємось вільним зниченням струму І2 (можна задавати і напрямок І1). В вибраному масштабі по цьому напрямку відкладаємо вектор І2. З рівняння І = І12 для вузла кола видно, що сума струмів І1і І2 дає струм І тобто струми, показані векторами, утворюють трикутник. Вектор струму І2 є однією з сторін трикутника (мал.7.9).

Дві інші сторони можна побудувати з допомогою циркуля, зробивши одну засічку з початку вектора І2 розхилом, відвовідним струму І , а з кінця – струму І1.

Діаграму напруг будують по загальній методиці. Потрібно тільки мати на увазі, що при узгодженному вмиканні індуктивна напруга, випереджує, а при зустрічному вмиканні-відстає від струму І1 на 900.

Відзначимо, що при зустрічному вмиканні котушок один із струмів може випереджувати прикладену напругу. Це явище в колах з взаємоіндукцією називають хибним ємнісним ефектом.

Передача енергії між індуктивно зв’язаними котушками.

Нехай в індуктивно зв’язаних котушках (мал.7.10) струми

I11e1, I22e2 .

Вирази потужностей в комплексній формі, обумовлених взаємною індукцією, для першої і другої котушки мають вигляд

(7.17)

 


Звідси маємо

QM1=QM2= ωM I1I2 cos(α1–α2), (7.19)

PM1= –PM2= ωMI1I2sin(α1–α2). (7.20)

Позитивне значення активної потужності означає, що енергія надходить з кола в дану котушку, а від’ємне значення передачу енергії з даної котушки в коло.

Сумарна активна потужність, зумовлена взаємоіндукцією, яка надходить до обох котушок, дорівнює нулю: Рм1м2=0; сумарна реактивна потужність, зумовлена взаємоіндукцією, в загальному випадку відрізняється від нуля і може мати як знак плюс так і мінус.

Ватметри вимірюють Рм1 і Рм2, тому їхні показання не можна використати для знаходження опорів котушок r1 i r2 постійного струму.

Порядок виконання роботи

За показаннями приладів визначити, яке вмикання котушок є узгодженим, а яке зустрічним (А–амперметр на 0.25–1А, або 1–2А; V–вольтметр на 150 В; W–ватметр на 150 В, 1А).

На розімкнутому сталевому магнітопроводі розташовані дві котушки (у одної котушки використовують затискачі на 220

витків, а у другої-на 1200 витків).

2. Виміряти величини, вказані в табл.7.1 (напругу 90-120В вказує викладач) при узгодженому і при зустрічному вмиканні котушок. Результати вимірів занести в табл.7.1.

3. Зібрати схему згідно мал.7.12 для дослідження паралельного з’єднання котушок. За показаннями приладів визначити вид вмикання котушок (узгоджене чи зустрічне).

На схемі мал.7.12 - -розетка із закороткою. Для виміру струму та потужності будь-якої вітки потрібно в розетку, яка знаходиться в цій вітці, замість закоротки ввімкнути вилку з амперметром та токовою котушкою ватметра.

4. Ввімкнути схему під напругу (напругу, зручну для вимірів підібрати самостійно) і виміряти величини вказані в табл.7.1 при узгодженому та при зустрічному вмиканні котушок. Дані вимірів записати в табл.7.1.

5. Виміряти величини (табл.7.1) при поодинокому вмиканні кожної окремої котушки (для чого при вимірюванні струму в одній котушці розірвати коло другої котушки в схемі мал.7.12). Результати записати в табл.7.1.

Обробка результатів екперименту

1. За даними дослідів обчислити активні, реактивні, повні опори і еквівалентні індуктивності кожної котушки і всього кола для кожного досліду. Результати запивати в табл.7.1.

2. Визничити взаємну індуктивність і коефіцієнт зв’язку котушок.

3. За відомими параметрами котушок побудувати в масштабі векторні діаграми напруг та струмів:

3.1. для послідовного узгодженого і зустрічного вмикання при відомому струмі в колі;

3.2. для паралельного узгодженого і зустрічного вмикання, задаючись напрямком струму у другій котушці.

Порівняти отримані з цих діаграм значення напруг з відповідними даними з табл.7.1.

4. Для обох дослідів п.5 порядку виконання роботи обчислити аналітично:

4.1. активні потужності теплових втрат в кожній котушці;

4.2. активну потужність, яка передається з однієї котушки в другу.

5. Зробити висновки по роботі.

Контрольні запитання

1. Яке вмикання котушок є узгодженим та зустрічним?

2. Як дослідним шляхом визначити початки обмоток котушок?

3. Чи обмінюються індуктивно зв’язані котушки потужностями при послідовному з’єднанні?

4. Які фізичні процеси викликають зміни параметрів індуктивно зв’язаних котушок?

5. Як визначити яка котушка споживає енергію і яка віддає?

Література:

[ 1, c.198; 2, c.114; 3, c.403; 4, c.242; 5, c.133 ].


Лабораторна робота №8

 

РЕЗОНАНС НАПРУГИ В ЛІНІЙНОМУ ЕЛЕКТРИЧНОМУ КОЛІ

Мета роботи: дослідити електричний резонанс в нерозгалуженому колі з котушкою індуктивності та конденсатором.

Теоретичні положення

Під резонансним режимом роботи кола розуміють режим при якому, не дивлячись на наявність індуктивностей і ємностей, вхідний опір і вхідна провідність кола є чисто активними.

В резонансному режимі коло в цілому виявляє себе як активний опір, тому струм і напруга на вході кола співпадають по фазі. Реактивна потужність кола при цьому дорівнює нулю.

Розглянемо резонанс напруги в колі, яке складається з послідовно з’єднаних елементів r, L, С (мал.8.1), і яке називають послідовним коливальним контуром.

Струм буде співпадати по фазі з прикладеною напругою, якщо комплексний вхідний опір кола

Z = r +j(ωL) (8.1)

буде чисто активним, тобто Z = r,

а реактивний опір ωL=0 . (8.2)

Ця рівність визначає умову винекнення резонансу в колі, з якої знаходять резонансну частоту:

 . (8.3)

Із умови резонансу видно, що резонанс можна досягти зміною параметрів кола, а також частоти.

Струм в колі (мал.8.1)

Оскільки при резонансі напруги реактивний опір дорівнює нулю, то повний опір при резонансі досягає свого найменшого значення. Тому при незмінній вхідній напрузі струм в колі і активна потужність при резонансі мають найбільші значення:

 .

Кут зсуву фаз між вхідними напругою та струмом при резонансі дорівнює нулю:

 (8.5)

тому дорівнює нулю і реактивна потужність кола:

Q=UIsinφ=0.

Реактивні потужності, індуктивності та ємності відрізняються від нуля, рівні за значеннями, але протилежні за знаком:

.

Відношення реактивної потужності QL або Qc до потужності, яка втрачається в колі, називають добротністю контуру і позначають літерою Q:

де — характеристичний опір контура.

Величину, зворотню добротності, називають затуханням контура і позначають літерою .

Вектори напруги на індуктивності UL=IјL і ємності Uc=–Iјc при резонансі однакові за значеннями і протилежні за напрямком. Тому вони компенсують один одного, і напруга на вході кола дорівнює падінню напруги на активному опорі: U=Ir. Векторна діаграма для цього випадка показана на мал.8.2.

Напруги на реактивних елементах при резонанасі можуть значно перевищувати вхідну напругу. Тому резонанас в нерозгалуженому колі називають резонанасом напруги.

При резонансі відношення напруги на індуктивності чи ємності до вхідної напруги є добротністю контура:

.

Характеристичні опори контурів можуть мати значення від кількох десятків до сотен Ом, а опір втрат r – кілька Ом, тому добротність коливальних контурів, які застоствують в радіотехніці, може досягати кількох сотен одиниць. У стільки ж разів напруги на реактивних елементах будуть перевищувати вхідну напругу.

При зміні частоти вхідної напруги змінюється реактивний опір кола  , тобто, будуть змінюватись струм, напруги на елементах та кут зсуву фаз між струмом та вхідною напругою. Залежності струму, напруги на елементах і кута зсуву від частоти вхідної напруги при незмінній його амплітуді називають частотними характеристиками контура.

Коли резонанс в колі досягається зміною параметрів L або С (при фіксованій частоті джерела напруги), залежності струму в контурі і напруг на індуктивності і ємності від L або С називаються настроєчними кривими (мал.8.3).

Настроєчні криві, як і частотні характеристики будуються при сталій вхідній напрузі.

Якщо резонанас в колі досягається зміною ємності С, при ємностях, менших резонанасної, реактивний опір кола має ємний характер, тобто кут зсуву фаз в колі φ<0 (див.(8.5)).

Зменшуючись по модулю із збільшенням ємності, він стає рівним нулю при резонансі, а потім змінює знак і збільшується з подальшим збільшенням ємності, прагнузі до значення

.

На практиці резонанас напруг використовується головним чином в радіотехніці – для збільшення напруг, а також в електричних фільтрах, коли бажано пропустити струм певної частоти.

Порядок виконяння роботи

1.  Зібрати коло згідно мал.8.4, де V1–вольтметр на 60В; V2, V3–вольтметри на 75-150В; W–ватметр на 1-2 А і 75В; С–змінна ємність (знаходиться на стенді); rL, L–котушка індуктивності (1200 віт).

2. Встановити напругу на вході кола U1=25В. Реостата вивести. Змінюючи ємність, встановити в колі резонанс напруг (по найбільшому показанню амперметра). Результати вимірів звнести до табл.8.1.

3. З’ясувати залежність добротності кола від опору. Для двох значень опору реостата – середньому та повному (при резанансному значенні ємності конденсатора) зняти показання приладів і занести в табл.8.1.

4. Підтримуючи з допомогою ЛАТРа сталу напругу на вході кола U1=25В, вивести реостата r і зняти показання приладів при зміні ємності від нуля до максимального значення (по 5-7 точок до і після резонанасу), змінюючи ємність через 1-2мкФ, а біля резонансу – через 0,25-0,5мкФ.

Результати вимірів занести в табл.8.1.

Обробка результатів досліду

1. За даними вимірів обчислити величини згідно табл.8.1, вважати опір rc=0.

2. За даними вимірів та обчислень побудувати на одному малюнку залежності:

I=f(С), Uкат=f(С), UL=f(С), Uc=f(С), φ=f(С), P=f(С).

3. Побудувати в масштабі три векторні діаграми струму та напруги: до резонансу С<С0, в момент резонансу С=С0 та після резонансу С>С0.

4. Обчислити добротність контуру при резонансі для усіх значень опору реостату.

5. Зробити висновки по роботі.

Контрольні питання

1. Який режим роботи кола називають резонансним?

2. Як дослідним шляхом досягти резонансу в колі С послідовно з’єднаними котушкою індуктивності і конденсатором?

3. Від чого залежить добротність контура, резонанасна частота контура?

4. Як аналітично записати умову резонансу в колі в загальному випадку?

5. Як знайти вираз ω0 для розгалуженого кола?

Література:

[ 1, c.120; 2, c.105; 3, c.116; 4, c.262; 5, c.147 ].


Лабораторна робота №9

 

РЕЗОНАНС СТРУМІВ

Мета роботи: дослідити електричний резонанс в лінійному колі синусоїдного струму з паралельним з’єднанням котушки індуктивності і конденсатора.

Теоретичні положення

На мал.9.1 зображено коло з паралельним з’єднанням котушки з втратами і конденсатором, яке називають паралельним коливальним контуром.

Повну вхідну провідність кола позначають виразом

,

де g та b — відповідно активна та реактивна провідності кола:

.

За визначенням резонансу умова резонансу запишеться:

. (9.1)

Звідки знаходять резонансну частоту:

,


де —характеристичний опір контура;

—резонансна частота при відсутності втрат в контурі.

При наявності умови резонансу повна вхідна провідність контура y=g і вхідний струм співпадає по фазі з вхідною напругою. Векторна діаграма кола (мал.9.1) при резонансі показана на мал.9.2.

Маючи умову резонансу легко знайти значення струмів у колі (мал.9.1) в стані резонансу:

 (9.2)

З останнього виразу ясно, що при ρ>>r струми в вітках значно перевищують вхідний струм. Тому резонанс в паралельному коливальному контурі називають резонансом струмів. В практиці відношення  може досягти сотен одиниць і в стільки разів вхідний струм буде менший струмів у вітках.

При резонансі реактивні потужності котушкиі конденсатора рівні за значенням і протилежні за знаком :

,

тому реактивна потужність всього кола дорівнює нулю. Потужність, яка втрачається в котушці при резонансі,

.

Величину, яка показує, в скільки разів реактивна потужність котушки або конденсатора при резонансі більша потужності яка втрачається в контурі, називають добротністю контура і позначають літерою Q –

.

Якщо  , то  і струм на вході при резонанасі приблизно в Q раз менше струмів у вітках.

 Стану резонансу в колі, як це очевидно із умови резонансу (9.1), можна досягти зміною частоти ω, або параметрів кола r, L, С. Залежності струмів у колі (мал.9.1) від частоти і параметрів кола визначають виразами:

,

С ,

.

В практиці, як правило, настройку контурів в резонанс здійснюють з допомогою зміни ємності, оскільки ємність можна легко змінювати в широких межах.

З виразу (9.2) витікає, що при настройці контура в резонанс з допомогою зміни ємності вхідний струм в стані резонансу буде мінімальним, також мінімальною буде активна потужність, яку споживає контур.

Порядок виконання роботи

1. Зібрати коло згідно мал.9.3, використовуючи наступні прилади: вольтметр на 75-150В, фазометр на 5А, 127В, амперметри на 1-2А. Конденсатор змінної ємності знаходиться на стенді. Котушку індуктивності взяти у лаборанта.

2. На вхід кола подати напругу 50В, і змінюючи ємність, досягти в колі резонансу струмів.

Результати вимірювання занести до табл. 9.1.

3. Підтримуючи за допомогою ЛАТРа сталу напругу на вході кола (яка встановлена в п.2), змінювати ємнічть від нуля до максимального значення (по 5-7 точок до і після резонансу ) через 1-2мкФ, а поблизу резонанса через 0,25-0,5 мкФ. Результати вимірювання занести до табл. 9.1.

Обробка результатів досліду

1. За даними вимірів розрахувати величини наведені в табл.9.2, вважаючи, що активний опір конденсатора дірівнює нулю.

2. На підставі даних вимірів і обчислень побудувати на одному малюнку залежності I=f(C), I1=f(C), I2=f(C), P=f(C), φ=f(C), cosφ=f(C).

3. Побудувати в масштабі три векторні діаграми струмів і напруг: до резонансу С<С0, в момент резонансу С=С0 та після резонансу С>С0.


Информация о работе «Теоретичні основи електротехніки»
Раздел: Физика
Количество знаков с пробелами: 54302
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
86358
0
0

... ілу (Додаток 5); 5. Узагальнення і систематизація з розділу у вигляді опорно - інформаційних схем, табличних алгоритмів. 3.3 Анкетування студентів з даної проблеми Думка студентів про проведення теоретичних занять з дисципліни: " Основи електроніки та мікропроцесорної техніки ". Потрібне в відповідях підкреслити, анкету не підписувати. 1. Ви рахуєте, що викладач свій предмет? а) знає і ...

Скачать
49365
0
0

... і методи: метод аналізу літератури, метод аналізу передового досвіду, аналізу програми, метод дослідження і спостережень. І. Розділ І. Теоретичні основи формування і розвитку загальнотрудових умінь і навичок в учнів 8-11 класів при вивченні профілю “Деревооброрбка”.   І.1.Аналіз літературних джерел з проблеми формування і розвитку загальнотрудових умінь і навичок в учнів 8-11 класів при вивченн ...

Скачать
17051
0
6

... під кутом 90° до вектора напруги убік випередження. Вектор струму в нерозгалуженій частині ланцюга будуємо з початку побудови в кінець вектора ємнісного струму Ip3.  Ia/ 3 Розрахунок складних ланцюгів змінного струму символічним методом Електрична схема ланцюга й комплексна схема заміщення представлені на малюнку відповідно. Малюнок Намічаємо в незалежних контурах заданого ланцюга, ...

Скачать
15230
11
3

... ів до сотень у більшу сторону, приймаємо: . По знайденому числу витків визначимо опір обмотки [1, с.12]: Ом. ( 13) Знайдемо значення розрахункового струму котушки [1, с.12]: А. ( 14) Для перевірки правильності виконаного розрахунку знайдемо силу, що намагнічує, розроблювальної котушки й щільність струму, а так само потрібно оцінити тепловий режим [1, с.12]: А > А; А/мм2 < А/ ...

0 комментариев


Наверх