4. Вязкость. Течение жидкости в трубах

Идеальная жидкость, т. е. жидкость без внутрен­него трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуще внутреннее трение, называемое также вязкостью. Вязкость проявляется, в частности, в том, что возникшее в жидкости или газе движение, после прекращения действия причин, его вызвавших, постепенно прекращается. Примером может служить движение жидкости в стакане после того, как ее пе­рестают размешивать ложечкой.

Рассмотрим течение жидкости в круглой трубе. Измерения показывают, что при медленном течении скорость частиц жидкости изменяется от нуля в не­посредственной близости к стенкам трубы до макси­мума на оси трубы.

Жидкость при этом оказывается как бы разделенной на тонкие цилиндрические слои, которые скользят друг относительно друга, не пере­мешиваясь (рис. 42.1). Такое течение называется ла­минарным или слоистым (латинское слово lamina означает пластинку, полоску). Отсутствие пе­ремешивания слоев можно наблюдать, создав в стек­лянной трубке диаметра несколько сантиметров сла­бый поток воды и вводя на оси трубы через узкую трубочку окрашенную жидкость (например, анилин). Тогда по всей длине трубы возникнет тонкая окра­шенная струйка, имеющая отчетливую границу с водой.

Из повседневного опыта известно, что для того, чтобы Создать и поддерживать постоянным течение жидкости в трубе, необходимо наличие между кон­цами трубы разности давлений. Поскольку при уста­новившемся течении жидкость движется без ускоре­ния, необходимость действия сил давления указывает на то, что эти силы, уравновешиваются какими-то си­лами, тормозящим движение. Этими силами являет­ся силы внутреннего трения на границе со стенкой трубы и на границах между слоями. Более быстрый слой стремится увлечь за собой более медленный слой, действуя на него с силой F1 направленной по течению. Одновременно более медленный слой стрёмится замедлить движение более быстрого слон, дей­ствуя на него с силой F2y направленном против тече­ния (рис. 42.2).

Экспериментально установлено, что модуль СИЛЫ внутреннего трения, приложенной к площадке 5, ле­жащей на границе между слоями, определяется фор­мулой

где n— называемый вязкостью коэффициент про­порциональности, зависящим от природы и состояния

(например, температуры) жидкости, dv/dz—производная, показывающая, как быстро изменяется в дан­ном месте скорость течения в направлений г, перпен­дикулярном к площадке S. В случае качения жидко­сти в трубе ось z направлена в каждой точке границы между слоями по радиус} грубы (см. pиc, 42.1), Поэтому вместо dv/dz можно написать, dv/df, Знак мо­дуля в формуле (42.1) поставлен в связи с тем, что в зависимости от выбора направления оси z и харак­тера изменения скорости производная dv/dz может быть как положительной, так и отрицательной, в то время как модуль силы является положительной ве­личиной.

Мы уже отмечали, что при ламинарном течении жидкости в круглой трубе скорость равна нулю у стенки трубы и максимальна па оси трубы. Най­дем закон изменения скорости. Выделим воображае­мый цилиндрический объем жидкости радиуса r и длины l (рис. 42.3). При стационарном течении этот объем движется без ускорения. Следовательно, сумма приложенных к нему сил равна нулю. В направлении

движения на жидкость действует сила давления, мо­дуль которой равен p1Пr2; во встречном направле­нии— сила давления, модуль которой равен p2Пr2. Результирующая сил давления имеет модуль

(Пr2 — площадь основания цилиндра).

На боковую поверхность действует тормозящая движение сила внутреннего трения, модуль которой

согласно формуле

(42.1) равен

где 2Пrl — площадь бо­ковой поверхности ци­линдра, dv/dr — зна­чение производной на расстоянии r от оси трубы. Скорость убывает с расстоянием от оси труби, поэтому производ­ная dv/dr отрицательна и ее модуль равен —dv/dr {модуль отрицательного числа равен этому числу, взя­тому с обратным знаком).

Приравняв выражения (42.2) и (42.3), придем к дифференциальному уравнению

Разделив переменные, получим уравнение

интегрирование которого дает, что

Постоянную интегрирования С нужно выбрать так, чтобы на стенке трубы (т. е. при г = R) скорость об* ращалась в нуль. Это условие выполняется при

Подстановка этого значения в (42.4) приводит к фор­муле

Скорость на оси трубы равна

С учетом этого формулу (42.5) можно написать в виде

Отсюда следует, что при ламинарном течения скорость изменяется с расстоянием от оси трубы но параболическому закону (рис. 42.4а).

С помощью формулы (42.7) можно вычисти, по­ток жидкости Q, т. е. объем жидкости, протекающей через поперечное сечение трубы и единицу времени. Разобьем сечение трубы на кольца ширины dr (рис. 42.5). Через кольцо радиуса r пройдёт в еди­ницу времени объем жидкости dQ, равный произведе­нию площади кольца 2Пrdr на скорость v(t) на рас­стоянии от оси трубы:

(мы воспользовались формулой (42.7)). Проинтег­рировав это выражение по г в пределах ОТ пули до R, получим поток Q:

(S—площадь сечения трубы). Поток можно пред­ставить как произведение среднего по сечению значения скорости <и> на площадь 5. Из формулы (42.8) следует, что при ламинарном течении среднее значение скорости равно половине значения скорости на оси трубы.

Подставив в (42.8) выражение (42.6) дли с>о, по­лучим формулу

которая называется ф о р м у л о й П у а з е й л я . Из нее следует, что поток очень сильно зависит от радиуса трубы.

Естественно, что Q пропорционален отношению {P1 — Р2) / l т. е. перепаду давле­ния на единице длины трубы, а также обратно пропорционален вязкости жидкости n.

Формула Пуазейля использу­ется для определения вязкости жидкостей и газов. Пропуская жидкость или газ через трубку известного радиуса, измеряют перепад давления и поток Q. Затем на основании полученных данных вычисляют n.

Мы все время подчеркивали, что предполагаем те­чение медленным для того, чтобы оно имело ламинар­ный характер. Напомним, что ламинарное течение яв­ляется стационарным. Это означает, что скорость ча­стиц жидкости, проходящих через данную точку про­странства, все время одна и та же. Если увеличивать скорость течения, то при достижении определенного значения скорости характер течения резко меняется. Течение становится нестационарным — скорость ча­стиц в каждой точке пространства все время беспоря­дочно изменяется. Такое течение называется тур­булентным. При турбулентном течении происхо­дит интенсивное перемешивание жидкости. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределится по всему сечению потока. Это можно наблюдать в упоминавшемся выше опыте, если увеличить поток воды в стеклянной трубке.

Поскольку при турбулентном течении скорость в каждой точке все время меняется, можно говорить только о среднем по времени значении скорости, кото­рая при неизменных условиях течения оказывается постоянной в каждой точке пространства. Профиль средних скоростей для одного из сечений трубы при турбулентном течении показан на рис. 42.56. Сравне­ние с рис. 42.5 а показывает, что вблизи стенки трубы скорость изменяется гораздо сильнее, чем при лами­нарном течении; в остальной части сечения скорость изменяется меньше.

Рейнольдс установил, что характер течения оп­ределяется значением безразмерной величины

где р— плотность жидкости (или газа), v — средняя по сечению трубы скорость потока, n - вязкость жид­кости, l — характерный для поперечного сечения по­тока размер, например сторона квадрата при квад­ратном сечении, радиус или диаметр при круглом се­чении. Величина Re называется числом Рейнольдса.

При малых значениях Re течение носит ламинар­ный характер. Начиная с некоторого значения Re, называемого критическим, течение приобретает турбулентный характер. Если в качестве характер­ного размера трубы взять ее радиус (в этом случае Re = pvr/n), то критическое значение числа Рейнольдса оказывается равным примерно 1000 (если в качестве / взять диаметр трубы, то критическое зна­чение Re будет равно 2000).

Число Рейнольдса служит критерием подобия для течения жидкостей в трубах, каналах и т. д. Напри­мер, характер течения различных жидкостей (или га­зов) в круглых трубах разных диаметров будет оди­наковым, если каждому течению соответствует одно и то же значение Re.

В число Рейнольдса входит отношение плотности р и вязкости т). Величина

называется кинематической вязкостью. Чтобы отличить ее от v, величину n называют ди­намической вязкостью. Будучи выраженным через кинематическую вязкость, число Рейнольдса имеет вид

 


Информация о работе «Механика жидкостей и газов в законах и уравнениях»
Раздел: Физика
Количество знаков с пробелами: 24044
Количество таблиц: 2
Количество изображений: 13

Похожие работы

Скачать
47310
0
0

... состояние равновесия – на поверхность тела действует сила давления жидкости, которая уравновешивает вес жидкости внутри поверхности. Движение жидкостей и газов. Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время ...

Скачать
29493
0
5

... ,1995, 233с. А р у ш а н о в М. Л. Моделирование формирования фигуры Земли и некоторых геофизических полей на основе положений причинной механики. Узбекский журнал Проблемы Информатики и Энергетики, 2000. N1, с. 58-64. А р у ш а н о в М. Л. Г о р я ч е в А. М. О необходимости учета эффектов причинной механики в гидродинамических моделях прогноза и климата. ДАН РУз, 2002, N6, c. 38-40. Б е л о в ...

Скачать
34992
7
1

... -кольцевом режиме. Они обладают рядом дополнительных преимуществ: в этих аппаратах возможна совместная очистка от газообразных и дисперсных включений, достаточно просто обеспечивается оптимальная температура в зоне контакта фаз, они устойчиво работают в широких диапазонах нагрузок по газу и жидкости, имеют малые габариты и сравнительно простое конструктивное оформление, обеспечивают большое время ...

Скачать
29719
12
0

... одним из основоположников статистической физики и физической кинетики австрийским физиком Людвигом Больцманом в 1872 году и носящее его имя. §1 Функция распределения. Для вывода кинетического уравнения Больцмана рассмотрим одноатомный идеальный газ, т.е. достаточно разряженный газ, состоящий из электрически нейтральных атомов или молекул. Единственным видом взаимодействия между частицами ...

0 комментариев


Наверх