1.Основы.
sin2a+cos2a=1
seca=1/cosa
csca=1/sina
sec2a-tg2a=1
csc2a-ctg2a=1
2.Сумма углов.
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb
tg(a+b)=tga+tgb/1-tgatgb=
=ctga+ctgb/ctgactgb-1
tg(a-b)=tga-tgb/1+tgatgb=
=ctgb-ctga/1+ctgactgb
3. Умножение функций.
2sinacosb=sin(a+b)+sin(a-b)
2cosacosb=cos(a+b)+cos(a-b)
2sinasinb=cos(a-b)-cos(a+b)
4.Сложение и вычитание.
sina+sinb=2sin(a+b)/2cos(a-b)/2
sina-sinb=2sin(a-b)/2cos(a+b)/2
cosa+cosb=2cos(a+b)/2cos(a-b)/2
cosa-cosb=2sin(a+b)/2sin(b-a)/2
tga+tgb=sin(a+b)/cosacosb
tga-tgb=sin(a-b)/cosacosb
ctga+ctgb=sin(a+b)/sinasinb
ctga-ctgb=sin(b-a)/sinasinb
tga+ctgb=cos(a-b)/cosacosb
ctga-tgb=cos(a+b)/sinasinb
5.Разность квадратов функций
sin2a-cos2b=sin(a+b)sin(a-b)
cos2a-sin2b=cos(a+b)sin(b-a)
cos2a-cos2b=sin(a+b)sin(b-a)
6. Какая-то формула(крутая)
a cosa+b sina=c sin(a+f)
c=Öa2+b2
sinf=a/c
7.Функции нескольких углов.
sin2a=2sinacosa=2tga/1+tg2a
sin3a=3sina-4sin3a
sin4a=cosa(4sina-8sin2a)
cos2a=cos2a-sin2a=2cos2a-1=1-2sina==1-tg2a/1+tg2a=ctga-tga/ctga+tga
cos3a=4cos2a-3cosa
cos4a=8cos4a-8cos2a
tg2a=2tga/1-tg2a=2ctga/ctg2a-1=2/ctga-tga
ctg2a=ctg2a-1/2ctga=1-tg2a/2tga=ctga-tga/2
8.Функции половинного угла.
sina/2= Ö1/2(1-cosa)
cosa/2= Ö1/2(1+sina)
tga/2=1-cosa/sina=sina/1+cosa=Ö1-cosa/1+cosa
ctga/2=sina/1-cosa=1+cosa/sina=Ö1+cosa/1-cosa
9.Понижение степени Sin и Cos.
sin2a=1/2(1-cos2a)
sin3a=1/4(3sina-sin3a)
sin4a=1/8(cos4a-4cos2a+3)
cos2a=1/2(cos2a+1)
cos3a=1/4(cos3a+3cosa)
cos4a=1/8(cos4a+4cos2a+3)
| 00 | 300 | 450 | 600 | 900 |
p/6 | p/4 | p/3 | p/2 | ||
sin a | 0 | 1/2 | Ö2/2 | Ö3/2 | 1 |
cos a | 1 | Ö3/2 | Ö2/2 | 1/2 | 0 |
tg a | 0 | Ö3/3 | 1 | Ö3 | - |
ctg a | - | Ö3 | 1 | Ö3/3 | 0 |
Формулы привидения. | ||||||||
x | p + a | p - | 2p + | 2p - | p /2 + a | p /2 - a | 3/2p + a | 3/2p - a |
sin x | - sin | sin | sin | - sin | cos | cos | - cos | - cos |
cos x | - cos | - cos | cos | cos | - sin | sin | sin | - sin |
tg x | tg | - tg | tg | - tg | - ctg | ctg | - ctg | ctg |
ctg x | ctg | - ctg | ctg | - ctg | - tg | tg | - tg | tg |
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://ilib.ru/
Похожие работы
дробно рассмотрено преобразование групп общих решений тригонометрических уравнений. В третьем разделе рассматриваются нестандартные тригонометрические уравнения, решения которых основано на функциональном подходе. В четвертом разделе рассматриваются тригонометрические неравенства. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и ...
... угол 1800-α= по гипотенузе и острому углу: => OB1=OB; A1B1=AB => x = -x1,y = y1=> Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности. Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного ...
... Домашнее задание 19(3,6), 20(2,4) Постановка цели Актуализация опорных знаний Свойства тригонометрических функций Формулы приведения Новый материал Значения тригонометрических функций Решение простейших тригонометрических уравнений Закрепление Решение задач Цель урока: сегодня мы будем вычислять значения тригонометрических функций и решать ...
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
0 комментариев