Кафедра общей и прикладной геофизики

Курсовая работа

на тему:

Автокорреляционные функции и энергетические спектры погрешностей наблюдений

Выполнил: студент группы 3151

Климов Ю. С.

Проверил: профессор

Серкеров С. А.

Дубна, 2005


Содержание Введение Теоретическая часть Расчётная часть Заключение Список литературы
Введение

В данной работе рассматриваются элементы теории случайных функций и их применение для интерпретации гравитационных и магнитных аномалий. Аппарат теории случайных функций и основанный на нём статистический подход можно применять в различных ситуациях. Во-первых, когда мало известно о параметрах аномалий или геологических объектах, которыми они вызваны. Во-вторых, когда поставленную задачу гравиразведки и магниторазведки можно решить только с применением аппарата теории случайных функций и, наконец, в-третьих, при решении задач различными детерминированными методами.

Получаемые данные, корреляционные функции и связанные с ними энергетические спектры аномалий имеют следующие свойства: малая чувствительность к погрешностям наблюдений; взаимозаменяемость; чётность получаемых выражений.

В работе также приведены примеры применения теоретического материала к практике. Представлены расчёты для бесконечной горизонтальной материальной линии, бесконечной вертикальной материальной полосы и бесконечной горизонтальной полосы.. Для исследуемых функций построены графики при различных исходных данных.


Теоретическая часть

Автокорреляционные функции и энергетические спектры погрешностей наблюдений

При решении различных задач грави- и магниторазведки почти всегда возникает необходимость учета влияния погрешностей наблюдений. Поэтому очень важно выяснить законы изменения их автокорреляционной функции и энергетического спектра. Необходимо также выяснить чувствительность вычислительных схем к погрешностям наблюдений и получить формулы, позволяющие оценить их точность. Существующие формулы оценки их погрешности дают только предельное, следовательно, во многих случаях и завышенное значение погрешности.

Не менее важным является выяснение возможности корреляции погрешностей наблюдений с аномалиями. Обычно полагают, что они не коррелируются, но это не всегда так. Во многих реальных случаях и, особенно, когда искомая аномалия небольших размеров, погрешности наблюдений могут коррелироваться с аномалией. И тогда неучет коррелируемости может привести к значительным погрешностям в решаемой задаче. В таких случаях необходимо пользоваться способами, учитывающими корреляцию.

Под погрешностями наблюдений понимаются сумма случайных погрешностей наблюдений и влияний самых верхних плотностных неоднородностей. Рассмотрим основные энергетические характеристики погрешностей наблюдений [38].

Высокочастотные случайные помехи можно аппроксимировать белым шумом с ограниченной полосой частот, для которой

Bп(τ) = Bп(0)[sin(πτ / Δx)](πτ / Δx), (3.70)

где Δx - расстояние между пунктами наблюдений; Bп(0) -максимальное значение автокорреляционной функции - средний квадрат ошибок наблюдений. Это для случая, когда радиус корреляции погрешностей наблюдений r = Δx. В остальных случаях, т.е. когда r > Δx, автокорреляционную функцию погрешностей наблюдений можно выразить функциями

Bп(x)=Bп(0)exp[-(τ / d)2], (3.71)

Bп(x)=Bп(0)exp[-τ / d1], (3.72)

где d и d1 - постоянные, зависящие от радиуса корреляции ошибок наблюдений r.

Если ошибки между пунктами наблюдений взаимонезависимы, то

r = Δx.

Но обычно r > Δx, и это происходит из-за наличия в погрешностях наблюдений, кроме некоррелируемых между соседними точками измерений помех (ошибка в отсчете, ошибка в нивелировке и др.), случайной составляющей, коррелируемой между несколькими пунктами наблюдений. Последняя может быть обусловлена неравномерными в течение рейса условиями транспортировки, неравномерным изменением температуры, неравномерными атмосферными условиями (ветер, дождь), ошибками учета нуль-пункта и другими причинами. Для определения более правильных законов изменения автокорреляционной функции, энергетического спектра ошибок наблюдений и оценки соотношения между r и Δx были получены экспериментальные данные погрешностей наблюдений с гравиметрами (выборка из 400 значений).

Анализ этих данных показал, что их наилучшим образом можно аппроксимировать выражением


Bп(τ) = Bп(0)exp(-ατ)cosβτ (3.73)

при значениях постоянных α = 0,80 / r, β = π / 2r.

Значения радиуса корреляции погрешностей наблюдений r, найденные по этим экспериментальным данным, колеблются от l,3Δx до 2,0Δx (при разных выборках из 400 - при 50, 100, 200 и 400 значениях). При этом среднее и наиболее вероятное значение r=1,6Δx (это значение соответствует кривой автокорреляционной функции, построенной по всем 400 значениям погрешностей наблюдений). Поэтому здесь и в дальнейшем в качестве радиуса корреляции ошибок наблюдений г будет принято это уточненное значение r = 1,6Δx. Что же касается систематических ошибок, то для определения их радиуса корреляции можно воспользоваться формулой для определения радиуса корреляции суммарного поля, полагая, что

fп(x) = fс(x) + fо(x),

где индексы “c” и “о” указывают соответственно на случаи систематических ошибок и инструментальных ошибок, не коррелирующих между двумя соседними пунктами наблюдений. При значениях их средних квадратов Bс(0), Bо(0) значение rп можно определить из равенства

Данные анализа наблюденных погрешностей показывают, что Bc(0) ≈ Bo(0). Поэтому

rп = (rc+Δx) / 2.

Отсюда rc = 2rп - Δx.

Подставляя в это равенство вместо rп предельные значения rп = 1,ЗΔx и rп = 2Δx, найдем rc = 1,6Δx и rc = ЗΔx, т.е. можно принять, округляя до целых, что rc меняется примерно от 2Δx до ЗΔx.

Некоторые авторы полагают, что rc должен меняться от Δx до 2Δx. Более уточненные данные показывают, что rc меняется от 2Δx до ЗΔx (значению rп = 1,6Δx соответствует величина rc = 2,2Δx). Эти же данные, как более обоснованные, можно принять за основу при исследованиях в дальнейшем.

Учитывая изложенное выше, в дальнейшем в зависимости от решаемой задачи в качестве автокорреляционной функции ошибок наблюдений будем принимать выражения, определяемые равенствами (3.70) и (3.73). Им соответствуют следующие выражения энергетических спектров.

Для равенства (3.70)

 (3.74)

Для равенства (3.73)

(3.75)

Можно также пользоваться выражениями (3.71) и (3.72), но только для получения отдельных прикидочных оценок или с целью получения менее громоздких выражений из интегралов.

Для трехмерных аномалий, предполагая значения ошибок наблюдений симметричными относительно вертикальной оси, автокорреляционные функции ошибок наблюдений для законов, аналогичных равенствам (3.70) и (3.73) двухмерного случая, опишем соответственно формулами


Bп(τ)н = 2J1(eτ) / eτ, (3.76)

Bп(τ)н = exp(-pτ)J0(tτ) (3.77)

при следующих наиболее вероятных значениях постоянных [38]:

e = 2,4 / Δx, p = 0,5 / Δx, t = 1,5 / Δx.

Для энергетических спектров ошибок наблюдений, определяемых равенствами (3.76), (3.77), получим соответственно следующие выражения [для равенства (3.77) из-за громоздкости выражения приводим значение Qп(0)]:

(3 78)

(3.79)

Связь между энергетическими характеристиками исходных и трансформированных аномалий

Выразим энергетический (взаимный энергетический) спектр или корреляционную функцию трансформированной аномалии через энергетический (взаимный энергетичекий) спектр или корреляционную функцию исходной аномалии.

Так как спектр трансформированной аномалии ST выражается через спектр S [см. равенство (2.5)], то на основании формулы (3.16) для энергетического спектра трансформированной аномалии получим

QT(u,v) = Q(u,v)|Ф(u,v)|2, (3.80)

где Q — спектр исходной аномалии, а Ф - частотная характеристика преобразования. Из этой формулы можно получить энергетический спектр трансформированной аномалии, зная энергетический спектр исходной и частотную характеристику преобразования. Пользуясь равенствами (2.5), (3.17), такое же соотношение можно написать и для взаимных энергетических спектров:

QT(u,v)12 = Q(u,v)12|Ф(u,v)|2. (3.81)

Что же касается корреляционных функций (автокорреляционной и взаимной корреляционной), то, как видно из равенств (3.12), (3.15), (3.20), (3.80), (3.81), для получения корреляционной функции трансформированной аномалии по известной корреляционной функции исходной необходимо последнюю подвергать трансформации с частотной характеристикой |Ф(u,v)|2. Все это верно и для двухмерного случая. Рассмотрим несколько частных случаев.


Информация о работе «Автокорреляционные функции и энергетические спектры погрешностей наблюдений»
Раздел: Геология
Количество знаков с пробелами: 12748
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
147822
34
94

... и сигнализация нарушений и аварийных ситуаций с их протоколированием; Возможность дистанционного управления регулирующими исполнительными механизмами; Надежность. Для более эффективного функционирования системы автоматизации можно предъявить к Scada-пакету следующие требования: Контроль над технологическим процессом, состояние технологического оборудования и управление процессами и ...

Скачать
133819
3
0

... учесть введением в блок-схему дополнительного .источника шума [11]. Расстояние между отсчетами должно удовлетворять теореме Найквиста для двумерных колебаний [1]. Устройства для дискретизации и квантования изображений основаны на технике микроденситометрии. В подобных системах на пленку проектируется луч света с интенсивностью I1. Интенсивность I2 света, прошедшего сквозь пленку (или отраженного ...

Скачать
32541
0
1

... же для нахождения энергетически оптимальной концентрации эритроцитов в крови, парциального давления в артериальной и венозной крови, определения оптимальных функциональных параметров системы внешнего дыхания и др. 2 Принцип минимального воздействия в эколого-математических моделях Один из способов применения целевой функции состоит в формулировании общего утверждения относительно поведения ...

Скачать
186458
11
8

... иные нарушения, включая разглашение государственной или коммерческой тайны, государственные инспекторы могут быть привлечены к ответственности в соответствии с законодательством Российской Федерации. 3.9. Основы квалиметрии [47] Квалиметрия — раздел метрологии, изучающий вопросы измерения качества. Здесь используются те же законы и правила, что и в области измерения физических величин, но есть ...

0 комментариев


Наверх