3.5 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.
В практике геодезических работ часто одну и ту же величину измеряют дважды. Например, стороны теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.
mlср. = ½ √∑d2/n
где d – разности в каждой паре; n – количество разностей.
Формула Бесселя:
mlср = ½ √∑d2/n-1
Если измерения должны удовлетворять какому-либо геометрическому условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.
μ=√∑ [f2 /n]/N,
где - СКП одного угла;
f – невязка в полигоне;
N – количество полигонов;
n – количество углов в полигоне.
4. Определение дополнительных пунктов
4.1 Цель и методы определения дополнительных пунктов
Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных дальномеров – линейными засечками и лучевым методом.
В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака на землю.
4.2 Передача координат с вершины знака на землю. (Решение примера)
При производстве топографо-геодезических работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда и возникает задача по снесению координат пункта триангуляции на землю для обеспечения производства геодезических работ на данной территории.
Исходные данные: пункт A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).
Полевые измерения: линейные измерения выбранных базисов b1 и b'1; измерения горизонтальных углов ß1 , ß'1 , ß2 , ß'2 ; б , б'.
Требуется найти координаты точки P – XP, YP.
Решение задачи разделяется на следующие этапы:
Решение числового примера
Исходные данные
Обозначе- ния | А ХА, YА | B ХB, YB | C ХC, YC | β1 β2 | β2 β2` | β1 β1` | б б‘ |
Численные значения | 6327,46 | 8961,24 | 5604,18 | 266,12 | 38o26'00" | 70o08'54" | 138o33'49" |
27351,48 | 25777,06 | 22125,76 | 198,38 | 42˚26'36" | 87˚28'00" | 71˚55'02" |
Вычисление расстояния DАР
Обозначе- ния | B1 B2 | sinβ2 sinβ‘2 | sin(β1+β2 ) sin(β‘1+β‘2) | B1 sinβ2 B2 sinβ‘2 | D1 D2 | D1 -D2 2D/T | Dср |
Численные значения | 266,12 | 0,62160 | 0,94788 | 165,420 | 174,52 | 0,00 | 174,52 |
198,38 | 0,67482 | 0,76705 | 133,871 | 174,52 |
Решение обратных задач
Обозначения | YB YА | ХB ХА | YC YА | ХC ХА | tgαAB αAB | tgαAC αAC | sinα AB sinα AC cos αAB cosαAC | S AB S AC |
Численные значения | 10777,06 | 8961,24 | 7125,76 | 5605,08 | -0,5977 | 7,23421 | -0,51309 -0,99058 0,85833 -0,13693 | 3068,48 |
12351,48 | 6327,46 | 12351,48 | 6327,46 | 329˚07'55" | 262o07'51" | 5275,51 |
Вычисление дирекционных углов αАР = αD
Обозна- чения | D | sinб sinб' | S AB S AC | sin ψ sin ψ' | ψ ψ' | φ φ' | αAB αAC | αD α'D | αD-α'D õmß |
Численные значения | 174,52 | 0,66179 | 3068,48 | 0,03950 | 2o15'50" | 39o10'41" | 329o07'55" | 8o18'36" | ∆α=1'30" |
0,95061 | 5275,51 | 0,03292 | 1o53'13" | 106o11'46" | 262o07'51" | 8o18'37" |
sin ψ = D×sinб/ S AB; sin =174,52×0,66179/3068,48=0,03950;
sin ψ' = D×sinб'/ S AС; sin `=174,52×0,95061/5275,51=0,03292;
ψ = arcsin 0,03950 =2 o15` 50``;
ψ'= arcsin 0,03292=1 o53` 13``;
φ = 180 o – (б+ ψ) = 180 o – (138o33` 49``+2 o15` 50``) = 39o10` 41``
φ`= 180 o – (б`+ ψ` ) = 180 o – (71o55` 02``+1 o53` 13``) = 106 o11` 46``
αD =αAB ± φ =329o07` 55``+ 39o10` 41``= 8o18` 36``
αD`=αAC ± φ`=262o07` 51``+ 106 o11` 46``= 8o18` 37``
Контроль:
(αD–α'D) õmβ;
где mβ –СКП измерения горизонтальных углов.
Знак «+» или «-» в формулах вычисления дирекционного угла берется в зависимости от взаимного расположения пунктов А, Р, В и С.
(8o18` 36``-8o18` 37``) ≤ 30``
0o00` 01`` ≤ 30``
Решение прямых задач (вычисление координат т.Р)
Обозначения | αD αD' | sinαD sinαD' | cosαD cosαD' | DcosαD DcosαD' | DsinαD Dsinα'D | ∆Х - ∆Х' ∆Y - ∆Y' | ХА YА | Хp = ХА+ ∆Х Х'p = ХА+ ∆Х' Yp = YА+ ∆Y Y'p = YА+ ∆Y' |
Численные значения | 8o18'36" | 0,14453 | 0,98950 | 172,69 | 25,22 | ∆=00,00 ∆=00,00 ∆доп=25см | 6327,46 | 6500,15 |
8o18'37" | 0,14454 | 0,98950 | 172,69 | 25,22 | 12351,48 | 12376,70 |
Хp = ХА+∆Х,Yp = YА+∆Y,
Х'p = ХА+∆Х',Y'p = YА+∆Y'.
∆Х= DcosαD,∆Y= DsinαD,
∆Х'= Dcosα'D,∆Y'=Dsinα'D.
Расхождение координат не должно превышать величины õmß×p, где p=206265", mß – средняя квадратическая погрешность измерения угла.
Оценка точности определения положения пункта P.
Средняя квадратическая погрешность определения отдельного пункта вычисляется по формуле:
M2p = m2X +m2Y,M2p = m2D +(D×mα / P)2
где mD- определяется точностью линейных измерений, а mα – точностью угловых измерений.
Пример: mD =2см, mα= 5``, тогда
Mp =√ [(0,02) 2+(170×5/2×105)2] ≈ 2×10-2 = 0,02м.
- уравнивание геодезических сетей, Mapsuite - создание инженерно-топографических планов, LEICA Geo Office - обработка геодезических измерений, SiteMaster - автоматизация обмерных работ, GeometricalGeodesy - решение геодезических задач в системе Mathematica, предназначены для решения различных геодезических задач. В данной работе представлено решение аналогичных задач с помощью языка ...
... них не окажется нужной, то тогда средство необходимо разработать вручную, если это оправдано с точки зрения затраченного времени и материальных ресурсов. 2. Обработка геодезических измерений с использованием электронных таблиц Для первоначальной обработки информации, полученной в результате комплекса топографо-геодезических работ, мною использовалась программа “ТОГИ”, являющаяся пакетом ...
... на стройплощадке необходимо соблюдение требований норм и правил по технике безопасности, изложенных в главе СНиП Ш-4-80 "Техника безопасности в строительстве" и ведомственных инструкциях. К выполнению геодезических работ допускаются лица, прошедшие инструктаж, оформленный приказом по строительному управлению. Опасность получения травмы или увечья определяется в зависимости от условий рабочего ...
... -электронных приборов при непосредственном участии автора. Вторая глава. Во второй главе рассмотрены разработанные методы проведения исследований метрологических установок и стендов для поверки и калибровки геодезических приборов для измерения превышений. Метод исследования короткопериодической погрешности измерения вертикальных углов геодезических приборов. Важной задачей при исследовании ...
0 комментариев