2.1. Вычислить параметры зависимости a и b методом наименьших квадратов.

 

2.2. Оценить соответствие построенной зависимости статистическим данным.

 

Вариант 7 x 109 107 108 111 106 105 104
y 234 235 236 237 238 239 240

 

Выполнение задания

Для выполнения заданий используем пакет электронных таблиц Excel.

2.1 Блок исходных данных формируется в первых двух столбцах (A3:B9).

2.2 Вводится гипотеза, что между фактором Х и показателем Y существует линейная стохастическая зависимость = a · X +b

Оценки параметров a и b парной регрессии вычисляются по формулам


За блоком исходных данных находится блок промежуточных расчетов.

Для нахождения произведения  в ячейку C3 вводится формула =A3·B3. Далее копируем полученную формулу в другие ячейки столбца C. Значения вычисляем в столбце D.

Для определения сумм столбцов используем кнопку автосуммирования на панели инструментов ∑. После установления курсора на ячейку A10 нажимаем ∑ на панели инструментов, выделяем диапазон ячеек А3:А9, нажимаем Enter. Введенная формула копируется в необходимые ячейки 10-ой строки. Средние значения X, Y вычисляются в ячейках D11, D12 с использованием встроенной статистической функции СРЗНАЧ ():

=СРЗНАЧ(A3:A9) и =СРЗНАЧ(B3:B9).

В ячейки В12, В13 вводятся формулы для определения оценок параметров соответственно a и b.

=(B11*C10-B10*A10)/(B11*D10-A10^2) – для параметра а;

=D12-B12*D11 – для параметра b.

а=-0,602, b=301,55,

уравнение регрессии:

Y=-0,602×Х + 301,55

2.3. Для вычисления расчетных значений (і=) в ячейку E3 вводим формулу  с абсолютными ссылками координат-параметров a и относительной ссылкой координаты . Полученную формулу в ячейке E3 копируем в блок E4:E9 В ячейке E10 будет находиться сумма блока E3:E9. Поскольку математическое ожидание отклонения фактических данных от расчетных равняется нулю, то при правильном выполнении расчетов значения ячеек B10 и E10 будут совпадать.

Для определения адекватности принятой эконометрической модели экспериментальным данным воспользуемся F-критерием Фишера. Расчетное значение критерия Фишера определяется по формуле:

Значение  вычисляем соответственно в блоках F3:F9, G3:G9, H3:H9, а их суммы в блоке F10:H10.

Значения коэффициента детерминации вычисляется в ячейке F11 с использованием встроенной математической функции КОРЕНЬ.

Для оценки коэффициента корреляции

в ячейку I3 вводим формулу для вычисления значения  и копируется в блок I4:I9. Сумма блока I3:I9 вычисляется в ячейке I10.

Значения коэффициента корреляции вычисляется в ячейке F13.

Kkor=-0,672194

Расчетное значение критерия Фишера: Fроз= 4,121495

Табличное значение F-критерия для вероятностей P=0,95 и числа степеней свободы


K1 = m = 1,

K2 = n – m – 1 = n – 2 = 7 – 2 = 5 равняется: F(0.95;1;5)= 5,99

Поскольку , то с надежностью P=0,95 эконометрическую модель можно считать неадекватной экспериментальным данным. Об этом также говорит невысокое значение коэффициента корреляции Kkor=-0,672194

Таблица с расчетными данными:

Задача 3

Предприятие имеет 7 филиалов по реализации продукции. Руководству предприятия необходимо, исходя из статистических данных об их деятельность оценить силу зависимости товарооборота (Y) от факторов: объема торговой площади (S), интенсивности потока покупателей (N) и стоимости основных фондов (F). С помощью линейной регрессионной модели вида


,

установить связь между товарооборотом и двумя наиболее существенными факторами.

3.1. Вычислить коэффициенты корреляции между результативным признаком Y и факторами: S, N и F.

3.2. Определить два фактора, которые наиболее влияют на товарооборот Y.

3.3. Вычислить параметры регрессионной модели а , b , с методом наименьших квадратов.

3.4. Оценить соответствие построенной зависимости статистическим данным.

Вариант 7 S, кв.м. 15 23 18 18 19 17 23
N, чел. 567 568 569 345 234 453 345
F,тис.грн. 10 7 11 28 15 10 57
Y,млн.грн 0,25 0,24 0,23 0,28 0,23 0,27 0,27

 

Выполнение задания


Информация о работе «Метод Монте-Карло»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 12333
Количество таблиц: 4
Количество изображений: 20

Похожие работы

Скачать
21420
5
0

... частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*. §2. Оценка погрешности метода Монте-Карло. Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) ...

Скачать
13145
1
0

... прийнятної точності необхідна велика кількість статистичних випробувань. Теорія методу Монте-Карло вивчає способи вибору випадкових величин  для вирішення різних завдань, а також способи зменшення дисперсії випадкових величин. 3. Програма обчислення кратного інтеграла методом Монте-Карло Обчислити певний інтеграл . за методом “Монте-Карло” по формулі , де n – число випробувань ;g(x) – щі ...

Скачать
26423
6
2

... Впрочем, для наиболее распространённых псевдослучайных чисел период столь велик, что превосходит любые практические потребности. Подавляющее большинство расчётов по методу Монте-Карло осуществляется с использованием псевдослучайных чисел. Значения любой случайной величины можно получить путём преобразования значений одной какой-либо случайной величины. Обычно роль такой случайной величины играет ...

Скачать
19446
2
2

етка – одно из простейших средств получения случайных чисел с хорошим равномерным распределением, на использовании которых основан этот метод. Метод Монте – Карло это статистический метод. Его используют при вычислении сложных интегралов, решении систем алгебраических уравнений высокого порядка, моделировании поведения элементарных частиц, в теориях передачи информации, при исследовании сложных ...

0 комментариев


Наверх