2.2 Структура ФММР

Кроме множества N полюсов, структуру ФММР представляют под множество А полюсов для электропитания по переменному току в процессе преобразования сигналов и под множество S полюсов для электропитания МП по постоянному току для создания рабочего режима.

Связь между множествами A, S и N определяет выражение

А £ N, S £ N. (2.4)

Пусть а- размер А, а bi – его элемент при i=1,a , s-размер S, Сj- его элемент при j=1,s.

В случае ФМП множество полюсов N представляет собой объединение полюсов A и S, т.е.

N=AUS. (2.5)

При этом возможны следующие отношения между A, S и N.

Для пассивных устройств

S=0, A=N. (2.6)

Для устройств постоянного тока, для которых мгновенными измерениями сигналов во времени можно пренебречь

A=0, S=N. (2.7)

Подмножества A и S совпадают (например для транзистора)

A=S=N. (2.8)

Для устройств типа операционного усилителя

AÌS=N. (2.9)

Полюса А и S изолированы друг от друга (некоторые интегральные схемы)

AÌS, N=A+S. (2.10)

Условия (2.6)-(2.10) необходимо учитывать как при конкретном применении МП, так и при организации процесса измерения его параметров.

2.3 Базовый узел ФММР

В качестве базового узла ФММР можно выбрать любой из его полюсов и даже объединить несколько полюсов. В этом случае порядок МП понизится на число полюсов принятых в качестве базовых, и его модель принципиально упростится.

С другой стороны базовый узел может быть внешним по отношению к МП, т.е. электрически с МП не связан. В этом случае первый закон Кирхгофа для мгновенных токов, втекающих в N-полюсник, может быть записан в виде

(2.11)

 


А линейные устройства будут иметь особенные матрицы параметров, т.е. сумма элементов этих матриц по строкам и столбцам будет равна 0.

В этой связи для описания ФММР достаточно идентифицировать N-1 строк и столбцов.

2.4 Структура элементной базы

Структура элементной базы РЭА приведена на рисунке 2.2.

Согласно рисунку 2.2 элементная база (ЭБ) подразделяется на двухполюсники (ДП) и многополюсники (МП). Считаем необходимым выделить ДП в отдельное подмножество в виду их исключительного значения в качестве компонент, на основе которых конструируется более сложные по структуре и назначению компоненты, в том числе и МП. ДП и МП в свою очередь подразделяются на пассивные (ПЭ) и активные (АЭ) элементы. АЭ отличаются от ПЭ тем, что режим их функционирования обязательно определяют дополнительные факторы, например, токи напряжения смещения рабочей точки. Подклассами П и А являются элементы: дискретные элементы (Д)- элементы со сосредоточенными постоянными параметрами, относительно простой конструкции и принципа действия (резисторы, конденсаторы, транзисторы и т.п. ); с распределенными параметрами (РП); акустоэлектронные элементы (АЭ); функциональные элементы (ФЭ); интегральные схемы (ИС); цифровые элементы (ЦЭ). По существу, подклассы элементов, определяющих структуру АЭ и ПЭ, совпадают за исключением ЦЭ, которые являются особым подклассом активных элементов, элементарных логических ИС до сложнейших микропроцессорных устройств.

 


Рисунок 2.2 - Структура элементной базы РЭА.

2.5 Модели РЭ для САПР электронных схем

 

2.5.1 Встроенные модели

В современных САПР электронных схем, например, PSpice широко используются встроенные модели. В системе PSpice в состав этих моделей входят модели диода, биполярного транзистора, канального полевого транзистора, МОП-транзистора и магнитного сердечника. Указанные модели позволяют рассчитывать статические линейные и нелинейные динамические режимы. В основу моделей диодов и транзисторов положены идеи выдвинутые Эберсом и Моллом. В этих моделях отражены достижения последних десятилетий.

К достоинствам встроенных моделей можно отнести:

−  элементы, указанные выше, можно аттестовать по справочным данным;

−  в зависимости от решаемой задачи можно определить уровень сложности моделей, тем самым оптимизируя процесс вычисления;

−  для МОП транзистора предлагается 4 уровня сложности, а для биполярного транзистора 3, кроме моделей Гуммеля-Пунна аттестуемой 59 параметрами и константами.

Также предусмотрены усеченное использование моделей Эберса-Молла на основе 16-20 параметров, предоставление пользователю корректировки встроенных моделей.

К недостаткам встроенных моделей, приведенных в литературе /2/ следует отнести их сложность. Анализ показывает, что для расчета малосигнальной модели биполярного транзистора требуется использовать практически весь математический аппарат нелинейного варианта его модели.

Также к недостаткам следует отнести ограниченный частотный диапазон. По данным /2/ частотный диапазон биполярного транзистора ограничен 100 МГц. Отсутствие достаточного объема справочной информации и связанной с этим необходимость организации сбора дополнительной информации, путем реализации дополнительных измерительных процессов.


Информация о работе «Блок управления и контроля автоматизированного тестера параметров радиоэлементов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 57842
Количество таблиц: 15
Количество изображений: 18

Похожие работы

Скачать
148486
26
5

... плана ФЭ. Большое разнообразие моделей РК приводит к необходимости использования разнообразных способов и технических средств для измерения их параметров. Как правило, статические и динамические параметры РК измеряют на разных технологических установках. Методы построения средств измерения для идентификации моделей РК могут быть сведены к следующим принципам, учитывающим особенности подключения ...

Скачать
91544
61
24

... может быть определена в результате решения матричного уравнения Y = 2(K - Ko ) , (16) где -1 - знак обращения матриц К и Ко. 3.4  Методика измерения двух- и четырехполюсных радиоэлементов Для случая двухполюсника n = 1  (17) имеем i = 1; j = 0.  (18) Очевидно, что при условиях (17) - (18) имеем: 1) коэффициенты матриц Ко и К с ...

Скачать
183285
12
5

... : ¾   температура, °С +25±10; ¾   относительная влажность воздуха, % 45...80; ¾   атмосферное давление, мм рт. ст. 630...800. Так как блок интерфейсных адаптеров предназначен для работы в нормальных условиях, в качестве номинальных значений климатических факторов указанные выше принимают нормальные значения ...

Скачать
55876
14
15

... в народном хозяйстве. Специальная часть. 3. 1. Определение задачи. Из задания на курсовое проектирование определим суть задачи: для некоторого синхронного цифрового автомата необходимо спроектировать устройство управления на основе жёсткой логики, которое в соответствии с заданными кодами микрокоманд формирует на выходной десятиразрядной шине управляющую последовательность цифровых сигналов. 3. ...

0 комментариев


Наверх