Задача 1. В партии из 60 изделий 10 – бракованных. Определить вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными:
а) ровно 2 изделия;
б) не более 2 изделий.
Решение.
А)
Используя классическое определение вероятности:
Р(А) – вероятность события А, где А – событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными ровно 2 изделия;
m – кол-во благоприятных исходов события А;
n – количество всех возможных исходов;
Б)
Р(А’) – вероятность события А’, где А’ – событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными не более 2 изделий,
;
– кол-во благоприятных исходов события ;
– кол-во благоприятных исходов события ;
– кол-во благоприятных исходов события ;
n’ – количество всех возможных исходов;
Ответ: вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными: а) ровно 2 изделия равна 16%. б) не более 2 изделий равна 97%.
Задача 2. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй – 2%, третий – 3%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата в цех поступило соответственно 20, 10, 20 деталей.
Решение.
По формуле полной вероятности:
где А – взятие хорошей детали, – взятие детали из первого (второго / третьего) автомата, – вероятность взятия детали из первого (второго / третьего) автомата, – вероятность взятия хорошей детали из первого (второго / третьего) автомата, – вероятность попадания на сборку небракованной детали.
; (т. к. ) = 1% = 0.01)
;
;
Ответ: Вероятность попадания на сборку небракованной детали равна 98%.
Задача 3. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй – 2%, третий – 3%. С каждого автомата поступило на сборку соответственно 20, 10, 20 деталей. Взятая на сборку деталь оказалась бракованной. Найти вероятность того, что деталь поступила с 1-го автомата.
Решение.
По формуле полной вероятности:
где А’ – взятие бракованной детали, – взятие детали из первого (второго / третьего) автомата, – вероятность взятия детали из первого (второго / третьего) автомата, – вероятность взятия бракованной детали из первого (второго / третьего) автомата, – вероятность попадания на сборку бракованной детали.
; (согласно условию)
;
;
Согласно формуле Байеса:
Ответ: Вероятность того, что деталь поступила с 1-го автомата равна 20%.
Задача 4. Рабочий обслуживает 18 станков. Вероятность выхода станка из строя за смену равна . Какова вероятность того, что рабочему придется ремонтировать 5 станков? Каково наивероятнейшее число станков, требующих ремонта за смену?
Решение.
Используя формулу Бернулли, вычислим, какова вероятность того, что рабочему придется ремонтировать 5 станков:
где n – кол-во станков, m – кол-во станков, которые придётся чинить, p – вероятность выхода станка из строя за смену, q =1-р – вероятность, не выхождения станка из строя за смену.
.
Ответ: Вероятность того, что рабочему придется ремонтировать 5 станков равна 15%. Наивероятнейшее число станков, требующих ремонта за смену равно 3.
Задача 5. В двух магазинах, продающих товары одного вида, товарооборот (в тыс. грн.) за 6 месяцев представлен в таблице. Можно ли считать, что товарооборот в первом магазине больше, чем во втором? Принять = 0,05.
Все промежуточные вычисления поместить в таблице.
Магазин №1 | Магазин №2 |
20,35 | 20,01 |
20,60 | 23,55 |
32,94 | 25,36 |
37,56 | 30,68 |
40,01 | 35,34 |
25,45 | 23,20 |
Пусть, a1 – товарооборот в 1 магазине, a2 – товарооборот во 2 магазине.
Формулируем гипотезы Н0 и Н1:
Н0: a1 = a2
Н1: a1 ≠ a2
xi | xi-a1 | (xi-a1)2 | yi | yi-a2 | (yi-a2)2 | |
20,35 | -9,135 | 83,44823 | 20,01 | -6,35 | 40,32 | |
20,6 | -8,885 | 78,94323 | 23,55 | -2,81 | 7,896 | |
32,94 | 3,455 | 11,93703 | 25,36 | -1 | 1 | |
37,56 | 8,075 | 65,20563 | 30,68 | 18,66 | ||
40,01 | 10,525 | 110,7756 | 35,34 | 4,32 | 80,64 | |
25,45 | -4,035 | 16,28123 | 23,20 | 8,98 | 9,98 | |
∑ | 176,91 | 366,591 | 158,14 | -3,16 | 158,496 |
a1 = = = 29,485, a2 = =
1 = = 73.32
2 = =
n 1 = n 2 = n =6
Вычислю выборочное значение статистики:
ZВ = * =
Пусть = 0,05. Определяем необходимый квантиль распределения Стьюдента: (n1+n2-2)= 2.228.
Следовательно, так как ZВ=0,74< =2,228, то мы не станем отвергать гипотезу Н0, потому что это значит, что нет вероятности того, что товарооборот в первом магазине больше, чем во втором.
Задача 6. По данному статистическому ряду:
1. Построить гистограмму частот.
2. Сформулировать гипотезу о виде распределения.
3. Найти оценки параметров распределения.
4. На уровне значимости = 0,05 проверить гипотезу о распределении случайной величины.
Все промежуточные вычисления помещать в соответствующие таблицы.
Интервал | Частота случайной величины |
1 – 2 | 5 |
2 – 3 | 8 |
3 – 4 | 19 |
4 – 5 | 42 |
5 – 6 | 68 |
6 -7 | 44 |
7 – 8 | 21 |
8 – 9 | 9 |
9 – 10 | 4 |
1. Гистограмма частот:
2. Предположим, что моя выборка статистического ряда имеет нормальное распределение.
3. Для оценки параметров распределения произведем предварительные расчеты, занесем их в таблицу:
№ | Интервалы | Частота, mi | Середина Интервала, xi | xi*mi | xi2*mi |
1 | 1–2 | 5 | 4,5 | 7,5 | 112,5 |
2 | 2–3 | 8 | 2,5 | 20 | 50 |
3 | 3–4 | 19 | 3,5 | 66,5 | 232,75 |
4 | 4–5 | 42 | 4,5 | 189 | 350,5 |
5 | 5–6 | 68 | 5,5 | 374 | 2057 |
6 | 6–7 | 44 | 6,5 | 286 | 1859 |
7 | 7–8 | 21 | 7,5 | 157,5 | 1181,25 |
8 | 8–9 | 9 | 8,5 | 76,5 | 650,25 |
9 | 9–10 | 4 | 9,5 | 38 | 361 |
∑ | n=220 | 1215 | 7354,25 |
Найдем оценки параметров распределения:
= = 5,523
2= 2 = 2,925 = = 1,71
... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1. Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...
... {ξn (ω )}¥n=1 . Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости «почти всюду», которую в теории вероятностей называют сходимостью «почти наверное». Определение 46. Говорят, что последовательность с. в. {ξn } сходится почти наверное к с. в. ξ при n ® ¥ , и пишут: ξn ...
... ничего другого, кроме как опять же события и . Действительно, имеем: *=, *=, =, =. Другим примером алгебры событий L является совокупность из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит, что до определенного момента времени, вообще говоря, нельзя сказать заранее о случайном событии А произойдет это событие или нет. Только ...
... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...
0 комментариев