2.6. Построение магистральной модели

Модели межотраслевого баланса Леонтьева позво­ляют планировать траекторию функционирования производствен­ного сектора экономики. Так, в рамках динамической модели Леонтьева  синхронно с траекторией валовых выпусков строятся сопутствующие траектории основных про­изводственных фондов и конечных спросов .

С научной и практической точки зрения важно существование в рамках модели сбалансированной траектории, такой, что

 при t = 0, 1, 2, ...

λ - const, λ > 1.

При этом траектории  и , сопутствующие сбалансированной траектории, тоже являются сбалансированными и обладают тем же темпом роста λ, то есть

Возникают два вопроса:

1) Существует ли в СММБ и ДММБ сба­лансированная траектория , темп роста λ, которой максимален?

2) Если ответ на первый вопрос положителен, то чем траектория  лучше любой другой «хорошей» (в некотором смысле) траектории?

Ответ на первый вопрос применительно к ДММБ несложно дать тотчас: константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Сложнее обстоит дело с ответом на второй вопрос, поскольку этот ответ ба­зируется на специальной теории, развитой в рамках математической экономики для исследования производственного сектора при помощи общих теоретико-аналитических моделей «затраты-выпуск». Знакомство с важнейшими поня­тиями и моделями этой теории составляет содержание данного пункта. В итоге будет получен ответ на второй вопрос в форме точного математического утвер­ждения. Качественно же суть этого утверждения такова: при определенных условиях любая «хорошая» (в некотором смысле) траектория

 экономики лишь только на начальном и конечном временном интервале, возможно, отклоняется от магистрали . Именно данное свойство магистралей обусловливает интерес к тем моделям «затраты-выпуск», в которых магистрали существуют. Модели «затраты-выпуск», в которых существуют магистрали, принято называть магистральными.

Первую магистральную модель построил в 30-х годах 20-го века выдаю­щийся американский математик Дж. фон Нейман. Эта модель, которую называ­ют моделью расширяющейся экономики фон Неймана, отказала глубокое воздействие на математическую экономику. Под­черкнем, что СММБ Леонтьева суть частный случай модели фон Неймана.

При обсуждении модели потребуется формализация понятий производства и производственного процесса.

Под производством понимается преобразование конкрет­ных количеств затрачиваемых продуктов в некоторые конкретные количества выпускаемых продуктов. Такое преобразование осуществляется при помощи заданной технологии Т. Технологическим (или производственным) процессом называется пара (, ), состоящая из конкретного вектора  затрат и конкретно­го вектора  выпусков.

Рассмотрим некоторый технологический процесс (ТП) (, ). Чтобы под­черкнуть, что его компоненты  и связаны технологией Т, будем, при необ­ходимости, обозначать ТП еще и так: (Т).

Пусть Т - какая-то заданная технология. В общем случае она позволяет реа­лизовать некоторое множество М конкретных и различных ТП, как-то: (, ), (, ), ... Все эти ТП, собранные в множество М, принято именовать технологи­ческим множеством (ТМ) производственного сектора экономики. Так что

Модель Гейла

Моделью Гейла называется ТМ, элементы  которого удовлетво­ряют 4-м условиям, как то:

1.  Если , то =0 . Это естественное свойство принято называть не­осуществимостью «рога изобилия».

2.  М представляет собой выпуклый конус в .

3.  Для каждого номера i=1,2, ..., n, где n — количество компонент векторов  и , существует ТП  такой, что компонента  вектора положительна. Другими словами, свойство 3 означает, что каждый из n про­дуктов может быть произведен, так что невоспроизводимые ресурсы продуктами в модели Гейла не являются.

4.  Множество М замкнуто в . Это свойство, означающее, что множество М содержит все свои предельные точки, имеет сугубо математическую подоплеку, доставляющую удобство в аналитических исследованиях.

Пусть М — модель Гейла. В рамках модели М естественно задается динамика развития экономики. Пусть ; будем полагать, что вектор  потребля­ется (в процессе производства) в текущий момент времени t, а вектор  произ­водится в следующий момент (t+1). Тогда характеризует состояние экономики (в смысле запаса продуктов) в текущий момент t. Аналогично, вектор характеризует состояние экономики в следующий момент (t + 1), причем пара . Далее, вектор будет потребляться в мо­мент (t + 1), а в момент (t + 2) окажется произведенным вектор  и т.д. Та­ким образом, осуществляется динамическое движение экономики

Это движение самоподдерживающееся, поскольку какой-либо приток извне, полагаем, отсутствует.

Последовательность  называется допусти­мой траекторией в модели Гейла М на конечном интервале времени Т, если при t = 0, 1, 2, ..., T-1 справедливо отношение . Если Т бесконечно, то тра­ектория  допустима на бесконечном интервале времени. Не равная тождественно нулю допустимая траектория называется траекторией сба­лансированного роста, если при t = 0, 1, 2,... справедливо равенство

,

в котором λ - положительная константа, темп роста сбалансированной траекто­рии. Сбалансированная траектория  называется магистралью, если ее темп роста λ максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2,... лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением  применительно к сба­лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество МоМ тривиальных ТП мо­дели Гейла, то есть таких процессов , у которых . Можно пока­зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (,). Его темп роста определяем следующим образом

λ(,) = 0.

Пусть теперь - любой нетривиальный ТП; его темп роста определяется так:

В правой части последнего равенства минимум берется по всем положитель­ным компонентам вектора .

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста любого ТП , или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию . Каковы свойства этой функции? Отметим три из них.

1. Функция является положительно однородной функцией нулевой степени, то есть

,

при любом (> 0).

2. Значение функции удовлетворяет неравенству

3. В множестве М существует такой ТП , что

причем справедливо неравенство

.

Итак, для фармацевтической отрасли представлены данные по валовому выпуску и осуществленным соответствующим затратам для семи лет. Сведем эти данные в таблицу:

Материальные затраты, x Выпуск, y
1 87573 101964
2 95515,9 191487
3 109837,86 166431
4 71931 120408
5 75687,8 92829
6 72835,49 83607
7 80921,5 101964

Графически это будет представлено так:

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Тогда из представленного соотношения найдем темп роста экономики:

Константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Тогда сбалансированная траектория выглядит следующим образом:

Материальные затраты, x Сбал. выпуск, y
1 87573 100524,0139
2 95515,9 109641,5752
3 109837,86 126081,5841
4 71931 82568,7466
5 75687,8 86881,13301
6 72835,49 83607
7 80921,5 92888,83552


Глава 3


Информация о работе «Комплексный анализ рыбной отрасли»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 75426
Количество таблиц: 70
Количество изображений: 11

Похожие работы

Скачать
129245
2
0

... № 270 “О плане счетов бухгалтерского учета”, в котором был представлен порядок отражения лизинга в бухгалтерском учете. Развитие сети коммерческих банков способствовало внедрению лизинговых операций в банковскую практику. Российские лизинговые компании начали образовываться с середины 2000 года. В октябре 2004 года была создана Российская ассоциация лизинговых компаний “Рослизинг”. В 2004 году “ ...

Скачать
43984
4
0

... выявляют, и, по соглашению с заказчиком, копируют или излагают информацию (в случае необходимости с соответствующей верификацией) об интересующих заказчика лицах. В частности, в фондах Российского Государственного Исторического архива можно обнаружить следующие документы персонального характера: 1.  Послужные списки лиц состоявших на государственной службе (за исключением самых нижних чинов, ...

Скачать
82890
6
0

... ассортимент кулинарных изделий из рыбы, их повсеместное производство у нас в стране остаётся проблематичным, это связано с нехваткой или отсутствием современных производственных мощностей. 1.4. Факторы, влияющие на формирование ассортимента рыбной кулинарии Различают об­щие и специфичные факторы формирования ассортимента. Общими факторами, влияющими на формирование промышленного и ...

Скачать
160532
55
9

... цены на консервную продукцию снизились за год? Это связано с тем, что руководство намерено снизило их для того, чтобы реализовать продукцию.   3 Управление себестоимостью продукции на примере ОАО «Владивостокский рыбокомбинат» 3.1 Управление себестоимостью на основе утвержденного плана выпуска продукции ОАО «Владивостокский рыбокомбинат» создал и запустил консервный цех в ...

0 комментариев


Наверх