Классификация аэротенков

Очистка сточных вод поселка городского типа производительностью 6000 м3 сутки
127062
знака
19
таблиц
16
изображений

1.7 Классификация аэротенков

По существующим представлениям «аэротенк представляет собой резервуар, в котором медленно протекает смесь активного ила и очищенной сточной жидкости». Рассмотрим классификацию аэротнков по основным признакам:

по гидродинамическому режиму – аэротенки–вытеснители, аэротенки–смесители и аэротенки с рассредоточенным впуском сточной жидкости (аэротенки промежуточного типа);

по способу регенерирования активного ила – аэротенки с отдельной регенерацией и аэротенки без отдельной регенерации активного ила;

по нагрузкам на активный ил – высоконагружаемые (аэротенки на неполную очистку), обычные и низконагружаемые (аэротенки продленной аэрации);

по количеству ступеней очистки – одно-, двух- и многоступенчатые аэротенки. При этом под ступенью очистки следует понимать часть общей биохимической системы, в которой поддерживается специфическая культура активного ила;

по режиму ввода сточной жидкости – проточные, полупроточные, с переменным рабочим уровнем и контактные.

Конструкции применяемых аэротенков подразделяются по способу подачи сточных вод и их потоку на три основных типа:

-   вытеснители (рисунок 5) с «поршневым» потоком сточных вод;

-   смесители с рассредоточенной или центральной (рисунок 6) подачей и выпуском сточных вод;

-   аэротенки промежуточного типа (рисунок 7).

Рисунок 5. Схема движения сточных вод в четырехкоридорном аэротенке-вытеснителе.

Рисунок 6. Схема аэротенка-смесителя с центральным подводом сточных вод и ила в аэрационную зону.

Рисунок 7. Схема движения сточных вод в аэротенке промежуточного типа: смесителе-вытеснителе.

В основу схем работы аэротенков с регенераторами положены представления о стадийном характере процесса биохимической очистки сточных вод. Согласно данной концепции, первая стадия процесса – адсорбция или изъятие органических загрязнений активным илом – происходит более быстро, чем последующее их окисление. Поэтому обе стадии процесса осуществляются раздельно: в аэротенке происходит адсорбция и минерализация наиболее легко окисляющихся веществ, в регенераторе – завершение окисления сорбированных веществ и восстановление начальной активности ила.

Аэротенки с регенераторами в настоящее время применяются на многих городских станциях аэрации, рассчитанных на полную биохимическую очистку, а также на предприятиях различных отраслей промышленности [9,15].

1.8 Интенсификация биологической очистки сточных вод в аэротенках

Под интенсификацией понимается не только повышение окислительной мощности, но и повышение эффекта или глубины очистки сточных вод в них, равно как и всемерное сокращение затрат на обработку единицы объема очищаемой жидкости.

Введение периодической аэрации. Существенным фактором снижения энергозатрат в процессе биологической очистки сточных вод в аэротенках может служить использование некоторых закономерностей протекания биохимических процессов микробиального изъятия из раствора и последующей трансформации органических веществ. Одним из неизбежно образующихся продуктов первичной трансформации органических соединений является пероксид водорода, который может накапливаться либо в клетках микроорганизмов, либо выделяться в окружающую жидкость. В любом случае пероксид водорода можно рассматривать как определенный запас кислорода, поскольку под воздействием фермента каталазы или пероксидазы он расщепляется на кислород и воду. Это означает, что временное прекращение подачи воздуха в аэротенк не приведет к возникновению анаэробных условий. В силу этого, постоянная аэрация иловой смеси в аэротенке не является необходимой и, следовательно, может быть применена периодической аэрацией без ущерба для протекания аэробных процессов или для глубины очистки воды. Снижение энергозатрат при периодической аэрации происходит за счет двух основных факторов. Первый - это использование при перерыве образующихся в период аэрации количеств пероксида водорода. Второй - периодическое снижение концентрации растворенного в жидкости кислорода повышает интенсивность его переноса из воздуха в жидкость при возобновлении аэрации. По сравнению с непрерывной аэрацией периодическая аэрация позволяет уменьшить затраты электроэнергии на 25-30% [11].

Особо следует подчеркнуть важность введения периодической аэрации иловых смесей в системах с биологическим удалением соединений азота методом нитрификации - денитрификации. В последние годы это направление использования аэротенков всесторонне исследуется и достаточно широко используется в целях глубокого удаления соединений азота одновременно с биологической очисткой воды. Наиболее широкое распространение получили две базовые схемы работы аэротенков: схема работы по одноиловой системе и схема работы по двухиловой системе удаления азота. При этом следует отметить, что предложено и разработано значительное количество различных модификаций этих схем, направленных на оптимизацию очистных процессов и снижение капитальных и эксплуатационных затрат.

Увеличение массы активного ила, участвующего в процессе очистки. Повышение концентрации активного ила в аэротенках является основным из возможных путей интенсификации их работы. Считается, что с повышением дозы активного ила в зоне аэрации с 1—2 до 25 г/л происходит пропорциональный рост окислительной мощности аэротенков с 0,5—1 до 12 кг БПКполн/(м3 * сут). Однако повышение концентрации активного ила в аэротенках увеличивает вынос его из вторичных отстойников, что связано с ухудшением гравитационного разделения иловых смесей по мере повышения их концентрации. Одновременно возникает опасность длительного пребывания активного ила в анаэробных условиях во вторичных отстойниках, что может вызвать снижение активности ила, а в некоторых случаях даже его загнивание [22].

Для работающих аэротенков существует предельная концентрация активного ила в иловой смеси, поступающей во вторичные отстойники, при которой обеспечивается нормальная работа последних. Эта предельная концентрация для различных очистных сооружений может быть разной, зависящей от многих факторов. Увеличивая до возможного предела концентрацию активного ила в аэротенках, можно несколько увеличить их производительность и повысить качество очистки сточных вод. При этом нужно учитывать, что положительный эффект может быть достигнут только при полном обеспечении биохимического процесса кислородом.

Известно, что масса активного ила, участвующего в процессе биологической очистки, может быть увеличена за счет применения отдельной регенерации активного ила. В таком случае в регенераторах может поддерживаться высокая доза ила (до 7—8 г/л), а в аэротенках устанавливается оптимальная доза (обычно 1,5—2 г/л), обеспечивающая нормальную работу вторичных отстойников.

При наличии регенераторов важно поддерживать в них возможно большую концентрацию активного ила, что может быть достигнуто увеличением продолжительности уплотнения активного ила в осадочной части вторичных отстойников, то есть путем уменьшения расхода рециркулирующего ила. Однако, как уже отмечалось, это может иметь отрицательные последствия для работы вторичных отстойников и самих аэротенков.

Таким образом, с одной стороны, уменьшив расход рециркуляционного ила, можно существенно увеличить концентрацию и абсолютную массу активного ила в peгeнepаторах и тем самым увеличить окислительную мощность всей системы аэрационных сооружений, но, с другой стороны, уменьшение рециркуляционного расхода может вести к ухудшению окислительных и седиментационных свойств ила, к созданию менее благоприятных условий обеспечения микроорганизмов кислородом при возрастании концентрациях ила в регенераторах [12].

Учитывая эти противоположные тенденции, нужно полагать, что для каждого конкретного случая существует оптимальный расход рециркуляционного ила, обеспечивающий максимальную производительность аэротенков с предельной регенерацией активного ила. Установить этот оптимальный расход можно путем плавного изменения расхода рециркуляционного ила при непрерывном контроле таких показателей процесса очистки, как концентрация взвешенных веществ в воде на выходе из вторичных отстойников, БПК сточных вод до- и после очистки в аэротенке, дозы активного ила и концентрации растворенного кислорода в регенераторе и собственно аэротенке, иловый индекс.

Как отмечалось ранее, работа вторичных отстойников и вместе с этим аэротенков ухудшается при вспухании активного ила. Универсального способа борьбы с вспуханием ила не существует, что связано, по–видимому, с большим разнообразием причин этого явления, поэтому в каждом конкретном случае очень важно выявить и устранить эти причины. Обычно седиментационные свойства активного ила существенно улучшаются вследствие осуществления мер, обеспечивающих нормальный кислородный режим в аэротенках и оптимальные нагрузки на активный ил, устранение дефицита биогенных элементов в очищаемых сточных водах, усреднение сточных вод, поддержание оптимальных значений рН.

Установлено, что седиментационные свойства активного ила улучшаются по мере приближения гидродинамического режима работы аэротенка к идеальному вытеснению, увеличения коэффициента рециркуляции активного ила (до 1,5—2), увеличения объема отдельных регенераторов. Для борьбы с вспуханием ила рекомендуется перед аэротенками смешивать возвратный активный ил с очищаемой водой и выдерживать смесь в специальном резервуаре в течение 30—40 мин при перемешивании без аэрирования. Осаждаемость ила во вторичных отстойниках можно улучшить введением в иловую смесь солей железа и алюминия с дозами соответственно 7—8 и 7—10 г/м3 по иону металла, а также извести с дозами 30—50 г/м3 по окиси кальция и полиэлектролитов. Разрушение нитчатых бактерий и улучшение седиментационных свойств активного ила достигаются при обработке его сильными окислителями: хлором или перекисью водорода с дозами соответственно 10—20 и 200—500 г/м3 [5].

Возможным способом увеличения массы активного ила в аэротенках является заполнение всего или части их объема инертными материалами с развитой поверхностью, обрастаемой биологической пленкой (биотенки) - использование закрепленной (иммобилизованной) микрофлоры. Закрепление клеток микроорганизмов позволяет осуществлять сложные многостадийные процессы, обуславливает лучшую защищенность клеток от воздействия отрицательных факторов, создает высокую концентрацию клеток в реакторе. Кроме того, закрепление не только позволяет постоянно фиксировать клеточную массу микроорганизмов-деструкторов, но и осуществлять их пространственную последовательную смену одних организмов другими.

Важным преимуществом использования системы закрепленных клеток является их устойчивость к перепадам гидравлической нагрузки и залповым поступлениям загрязнений. Кроме того, иммобилизация позволяет существенно повысить окислительную мощность сооружений и глубину очистки, сократить время обработки сточных вод.

Разработка способов очистки сточных вод требует решения двух задач: первая - освобождение воды от веществ загрязнителей; вторая - освобождение воды от суспендированных микроорганизмов. И обе данные задачи эффективно решаются при использовании закрепленной микрофлоры и фауны. Закрепление на носителе различных водных организмов - совершенно необходимое условие надежной, глубокой и эффективной биологической очистки сточных вод. Иммобилизация повышает скорость окисления в 2-3 раза и особенно эффективна при очистке высококонцентрированных вод с большими значениями БПК. Увеличение удельной скорости окисления позволяет сократить время аэрации и, соответственно, уменьшить полезную вместимость аэротенка.

Реакторы оборудуются системой аэрации. По мере насыщения биологическими обрастаниями загрузка регенерируется путем интенсивной продувки воздухом.

Процесс биологической очистки в реакторах проходит настолько энергично, что на очистку может подаваться не отстоянная сточная вода. В реакторах происходит процесс нитрификации, а БПКполн снижается до 3-5 мг/л [11].

Применение систем аэрации с повышенной окислительной способностью. Одним из основных факторов определяющих интенсивность биохимического окисления органических веществ является непрерывное и полное обеспечение микроорганизмов активного ила кислородом. Недостаток кислорода приводит к нарушению обмена веществ в бактериальных клетках и снижению скорости окисления загрязнений. Считается, что для нормальной жизнедеятельности микроорганизмов активного ила достаточна минимальная концентрация растворенного кислорода 1—2 г/м3. Одновременно система аэрации должна обеспечивать достаточную интенсивность перемешивания иловой смеси для создания необходимой частоты обновления поверхности хлопьев, что увеличивает скорость диффузии субстрата и кислорода к бактериальным клеткам. Последнее обстоятельство нужно считать важнейшим условием для повышения окислительной мощности аэротенков, особенно при повышенных концентрациях активного ила.

Именно система аэрации в конечном итоге определяет максимальную концентрацию активного ила в аэротенке и тем самым его максимальную окислительную мощность, если считать, что эта максимальная концентрация не лимитируется работой илоотделителей (вторичных отстойников, флотаторов и др.). Применение кислорода для очистки сточных вод в аэротенках позволяет снизить расход электроэнергии в 1,3—1,7 раза. Наибольшая экономия электроэнергии наблюдается при растворении кислорода в иловой смеси, при этом с избытком компенсируются энергозатраты на производство кислорода.

Совершенствование гидродинамического режима аэротенков. Совершенствование гидродинамического режима аэротенков также позволяет интенсифицировать их работу. Существуют два основных типа аэротенков: смесители и вытеснители. Аэротенки-вытеснители обеспечивают высокое качество и стабильность очистки, однако доза, ила в них невелика и нагрузка на него распределяется неравномерно. Аэротенки-смесители отличаются равномерностью нагрузки на активный ил по органическим загрязнениям, что обеспечивает высокую скорость изъятия загрязнений. Однако в них возможен проскок неочищенной сточной жидкости. Эффективность работы действующих коридорных аэротенков можно повысить путем разделения объема коридора на секции (камеры, ячейки). В аэротенке такой конструкции происходит полное перемешивание, жидкости в каждой камере, однако отсутствует ее перемешивание между камерами. При последовательном движении жидкости от камеры к камере через отверстия в придонной части перегородок создается гидравлический режим, аналогичный гидравлическому режиму в идеальном вытеснителе. Размер камер, общее число которых колеблется от четырех до 10, может быть одинаковым. Наиболее предпочтителен объем камеры, пропорциональный остаточному содержанию загрязнений, определяемых БПК, по мере очистки сточной жидкости [22].

Комбинированные аэротенки. Комбинированные аэротенки, совмещающие в одном объеме зоны аэрации и отстаивания, для очистных сооружений пропускной способностью до 50 тыс. м3/сутки разрабатываются в нашей стране и за рубежом. В этих сооружениях в различных вариантах сочетаются процессы биокоагуляции, аэробного окисления и отстаивания или осветления во взвешенном слое. В зависимости от сочетания этих процессов аэротенки носят различные названия: аэротенк-отстойник, аэроакселератор, оксидатор, циклейтор, реактиватор, оксиконтакт, рапид-блок, оксирапид и т. д. (рисунок 8) [12].

Рисунок 8 – Оксиконтакт-2.

1—трубопровод для подачи сточных вод; 2 — зона аэрации; 3—аэраторы типа «Вибрэйр»; 4— зона отстаивания; 5 и 6 — трубопровод для отвода очищенной сточной жидкости и избыточного активного ила; 7—труба для подачи воздуха.

Комбинированные аэрационные сооружения отличаются высокой окислительной мощностью и компактностью. Они могут быть с механической, пневматической и пневмомеханической аэрацией. Конструктивно они выполняются с центральной зоной аэрации и периферийным отстаиванием, или наоборот.

Циркуляция возвратного активного ила из зоны выделения в зону аэрации осуществляется либо специально направленными потоками, либо перекачкой эрлифтами. В сооружениях с механическими аэраторами движение ила происходит под воздействием статического напора развиваемого таким аэратором.

В аэротенках-отстойниках, разработанных в нашей стране, предусматривается принудительная циркуляция активного ила. Такой технологический прием обеспечивает стабильный и регулируемый по объему возврат активного ила в зону аэрации (независимо от притока сточных вод) и поддержание его во взвешенном состоянии. В отстойной зоне аэротенка такой конструкции не образуются мертвые зоны, где возможно скопление и загнивание активного ила. Аэротенки-отстойники могут использоваться для очистки городских и производственных сточных вод, обеспечивая их полную или неполную биологическую очистку.

Применение комбинированных сооружений типа аэротенк-отстойник позволяет экономить земельные площади, сокращать протяженность технологических коммуникаций и значительно уменьшать потребление электроэнергии.

Применение реагентов. Применение различных реагентов также позволяет интенсифицировать процесс биологической очистки. Было изучено действие природных сорбентов на жизнедеятельность микроорганизмов. Установлено, что такие глинистые материалы, как монтмориллонит и палыгорскит, при добавке их в сточные воды в количестве 1 % способны увеличить окислительную активность культуры микроорганизмов почти в 2 раза.

Применение химического мутагенеза. Метод химического мутагенеза также получил широкое распространение для интенсификации очистки сточных вод от химических загрязнителей. Сущность этого метода заключается в воздействии химическими мутагенами на сложный биоценоз активного ила, содержащий различные популяции бактерий, актиномицитов, различных грибов, зеленых водорослей и т. д. [22]

Использование ультразвука. Использование ультразвука для интенсификации очистки сточных вод за счет повышения ферментативной активности микроорганизмов было изучено в Харьковском НИИ по охране вод. Объектом исследований была многокомпонентная, содержащая более 700 органических и минеральных загрязнителей, высококонцентрированная (ХПК до 10000 мг/л) и токсичная сточная жидкость завода химических реактивов. Эксперименты проводились в лабораторном аэротенке с использованием ультразвука. Диапазон электрической мощности составлял 3—400 Вт, время воздействия ультразвука на биоценоз 1—60 мин при частоте ультразвука 22±1 кГц [11]. Ультразвуковая обработка активного ила осуществлялась при постоянном аэрировании. Установлено, что для сточных вод данного производства оптимальной является выходная мощность 10 Вт при 10-ти минутной обработке активного ила ультразвуком. При воздействии ультразвука концентрация дегидрогеназ в активном иле повышается в 1,4—1,8 раз, в результате чего увеличивается окислительная мощность сооружения.

Электрообработка сточных вод. Электрообработка сточных вод с целью интенсификации процессов биологической очистки также проводилась в Харьковском НИИ по охране вод. Определялось влияние силы тока в 25—50 мкА на биохимическую активность ила при постоянных напряжении и времени воздействия. При очистке сточной жидкости с БПК 5400 мг/л эффект изъятия загрязнений в контрольном опыте составил 19%, а при раздражении бактериальных клеток электрическим током 84—87%. Установлено, что этот метод ускоряет внутриклеточные процессы, в частности повышается концентрация дегидрогеназ. Электрический ток целесообразно использовать для интенсификации биологической очистки высококонцентрированных сточных вод. Однако и при очистке городских сточных вод электростимуляция активного ила на Бортнической станции аэрации в Киеве позволила добиться значительного эффекта. При обработке активного ила очистных сооружений в течение 3 мин электрическим током мощностью 2,5 мВт эффект очистки по БПК5 возрос в 2,9—3,2 раза [12].

Совершенствование систем аэрации. Совершенствование систем аэрации сточных вод позволяет в значительной мере интенсифицировать процессы биологической очистки, снизить эксплуатационные расходы и затраты электроэнергии.

Большинство станций аэрации оснащено пневматическими аэраторами, из которых наиболее эффективны мелкопузырчатые. Мелкопузырчатая аэрация обеспечивает эффективность насыщения жидкости кислородом в пределах 2—3,3 кг/кВт*ч электроэнергии, средне- и крупнопузырчатая — 1,4—1,8 кг/кВт*ч [7]. Совершенствование мелкопузырчатой аэрации идет по пути создания устойчивых к засорению, а также легко извлекаемых и заменяемых или регенерируемых фильтросов. Таким образом, из изложенного выше видно, что работу аэротенков можно интенсифицировать в результате повышения концентрации активной биомассы в зоне аэрации, а также совершенствования конструкции всего сооружения в целом и отдельных его элементов. Повысить окислительную мощность аэротенков можно, применяя различные реагенты или управляя качественным составом биоценоза активного ила. На основании литературных данных выбрана технологическая схема, позволяющая проводить полную биологическую очистку сточных вод до уровня предельно–допустимых концентраций.

 

Технологическая схема очистки сточных вод поселка городского типа

На рисунке 9 и 10 приведены: традиционная схема очистки сточных вод и выбранная технологическая схема очистки сточных вод поселка городского типа. Отличительной особенностью выбранной схемы от традиционной является наличие в ней блока доочистки на механических фильтрах, используемых для того, чтобы перед сбросом в водоем снизить концентрацию взвешенных веществ и величину показателей БПК. Также блок обеззараживания ультрафиолетовым облучением, необходимого для уничтожения патогенных микроорганизмов содержащихся в сточной воде.

Рисунок 9. Традиционная технологическая схема очистки сточных вод

1- решетки; 2 – горизонтальные песколовки с круговым движением воды; 3 – первичный радиальный отстойник; 4 – аэротенк-вытеснитель с регенератором; 5 – вторичный радиальный отстойник; 6 – биопруды с естественной аэрацией; 7 – аэробный стабилизатор; 8 – песковые площадки; 9 – иловые площадки.

Рисунок 10. Технологическая схема очистки сточных вод поселка городского типа

1- решетки с механизированной очисткой; 2 – горизонтальные песколовки с круговым движением воды; 3 – первичный радиальный отстойник; 4 – аэротенк-вытеснитель с регенератором; 5 – вторичный радиальный отстойник; 6 – блок доочистки; 7 – блок обеззараживания; 8 – аэробный стабилизатор; 9 – песковые площадки; 10 – иловые площадки.

Описание технологической схемы поселка городского типа

Сточные воды, поступающие на очистные сооружения, подвергаются полной биологической очистке, включающей несколько последовательных ступеней:

- Задержание и удаление из сточных вод разного рода механических примесей, отбросов (бытовой мусор, тряпки, бумага) происходит на решетках.

 - Выделение из сточной воды минеральных примесей (песок, шлам и т.д.) осуществляется на песколовках.

 - Выделение из сточной воды грубодисперсных примесей, оседающих в виде сырого осадка и плавающих жироподобных веществ – на первичных отстойниках.

 - Биохимическое окисление растворенных, коллоидных и взвешенных органических веществ и неорганических загрязнений с помощью бактерий, простейших и других микроорганизмов активного ила – в аэротенке-вытеснителе с регенератором.

- Отделение сточной воды и активного ила происходит во вторичном отстойнике. Осуществляется разделение активного ила на две части. Циркуляционный активный ил под действием насоса поступает в аэротенк-вытеснитель, а избыточный активный ил подается в аэробный стабилизатор.

- Доочистка сточных вод происходит на механических фильтрах.

- Обеззараживание сточных вод протекает в бактерицидных установках.

- Обработка трех видов осадков: измельченные отбросы, взвешенные частицы и избыточный активный ил, осуществляется в аэробном стабилизаторе. После чего обезвоженный и минерализованный осадок подается на иловые площадки.



Информация о работе «Очистка сточных вод поселка городского типа производительностью 6000 м3 сутки»
Раздел: Экология
Количество знаков с пробелами: 127062
Количество таблиц: 19
Количество изображений: 16

Похожие работы

Скачать
132098
16
18

... труб на новые мембранные мелкопузырчатые аэраторы. Для достижения поставленных целей необходимо было решить следующие задачи: Ø  Тщательно изучить теоретические основы технологии биохимической очистки сточных вод нефтеперерабатывающих предприятий; Ø  Проанализировать имеющуюся технологическую схему очистки сточных вод на предприятии ООО "ЛУКОЙЛ-Пермнефтеоргсинтез"; Ø  Выбрать ...

Скачать
215069
60
9

... Расчет сооружений доочистки биологически очищенных сточных вод. В качестве реконструкции очистной станции предложен блок доочистки сточных вод. Доочистка биологически очищенных сточных вод ведется по следующей схеме: промывка  РОВ НС Б.СЕТКИ ФИЛЬТРЫ СМ Р1 НС с ...

Скачать
133051
22
4

... ,25/(41,12+1548)=382 мг/л В результате после прохождения локальных очистных сооружений стоки мясокомбината удовлетворяют требованиям к сбросу в поселковую канализацию, не нарушая при этом работы очистных сооружений и канализационной сети. На площадке предприятия запроектирована полная раздельная система водоотведения. Разработана очистка производственных сточных вод в количестве 41,12 м3/сут. ...

Скачать
157522
16
14

... быть использована в качестве присадочного материала при подготовке осадка к обезвоживанию. Это позволяет снизить расход химических реагентов. Проектирование новых и реконструкцию существующих комплексов для обработки осадков на очистных станциях и установках рекомендуется выполнять применительно к унифицированным производительностям очистных установок и станций, а также к местным условиям и ...

0 комментариев


Наверх