1. Задача о квадратуре круга (пользовалась исключительной известностью с древнейших времен).

Построить циркулем и линейкой квадрат, площадь которого бала бы равна площади круга данного радиуса.

Пусть  - радиус круга, , т.е. площадь крута равна площади квадрата со стороной Иначе говоря, x является средней пропорциональной и .

Если бы можно было построить , то легко можно было строить искомый квадрат.

Итак, задача о квадратуре круга свелась к задаче о опрямлении окружности, т.е. построению отрезка длины . При  эта длина равна .

Ламберт И. (швейцарский математик) доказал, что π - иррациональное число. Но вопрос о возможности спрямления окружности остался открытым, так как согласно следствию из предыдущей теоремы отрезок длины а (при выбранном единичном отрезке) может быть построен циркулем и линейкой, если а получается из I с помощью конечного числа основных действий. Такие числа являются алгебраическими, т.е. служат корнями многочленов с рациональными коэффициентами. Числа, не являющиеся алгебраическими, называются трансцендентными.

В 1882 г. Линдеманн Ф. доказал, что π является трансцендентным числом. Следовательно, проблема о квадратуре крута разрешена, задача о квадратуре крута не разрешима о помощью циркуля и линейки.

2. Задачу удвоения куба: зная ребро куба, построить ребро куба, объем которого был бы вдвое больше объема данного.

Пусть а - длина ребра данного куба, x - искомого. Имеем: х2 = 2а3. Если а = 1, то получим уравнение х3 – 2 = 0. Это уравнение не имеет рациональных корней (т.к. рациональные корни этого уравнения обязательно целые, их надо искать среди делителей свободного члена). Из алгебры известно: если уравнение  рациональные числа) не имеет рационального корня, то ни один корень этого уравнения не может быть выражен через I лишь с помощью конечного числа основных действий. Тогда, учитывая указанное выше следствие, получим, что отрезок длины x не может быть построен с помощью циркуля и линейки.

Замечание. Эта задача может быть решена с привлечением двух прямых углов.

3. Задача о трисекции угла: построить угол, в 3 раза меньший данного.

Достаточно рассмотреть эту задачу для острых углов, т.к. при тупом  угол  является острым и третья часть равна  Отсюда следует, что

Итак, пусть α - данный острый угол, φ - искомый,


Если отрезок длины x можно построить циркулем и линейкой, то из прямоугольника следует, что можно построить и сам угол φ. Следовательно, задача свелась к построению отрезка длины х, где x - один из корней уравнения (I).

Пусть α = 60º, тогда в = 1. Уравнение (I) приводится к виду:

Легко убедиться (из тех же соображений, что и выше), что у этого уравнения нет рациональных корней, следовательно нет ни одного корня, который выражался бы через I с помощью конечного числа основных действий.

Следовательно, задача о трисекции угла не разрешима циркулем и линейкой в общем виде.

Но, может быть, она никогда не разрешима? Это не так. Пусть α = 90°. Тогда уравнение (I) имеет вид: x3 - зх = 0, Отрезок можно построить, следовательно, задача в этом случае разрешима.

нетрудно построить и угол φ.

Можно чисто геометрически построить угол в 60° (хорда равна радиусу, см.рис.).


Замечание 1. Существуют приборы-трисекторы, позволяющие делить угол на три равные части.

АВСD и AB1C1D1 - ромбы, φ =.

Замечание 2. Задачу о трисекции угла легко решить циркулем. Строим последовательно: 1) окружность ω расстояние между отметками на линейке;

2) точку А;

3) прямую, проходящую через А так, чтобы расстояние между второй точкой пересечения с окружностью и точкой пересечения этой прямой с прямой ОN было равно .

Построение правильных многоугольников циркулем и линейкой.

Решение проблемы связано большими трудностями, и решена она полностью великим немецким математиком Гауссом в 1796 году.

Вопрос построения правильного n -угольника равносилен вопросу о возможности деления окружности на n равных частей. Возьмем окружноcть радиуcа и прямоугольную систему координат. Задача деления


окружности на n равных частей состоит в построении точек

т.е, в построении корней уравнения Zn– 1= 0 о тличных – от Z0 = 1. Это равносильно построению корней уравнения  Это уравнение называется уравнением деления окружности.

Гаусс доказал следующую замечательную теорему.

Теорема. Построение правильного n - угольника с помощью циркуля и линейки возможно тогда и только тогда, когда  (числа Ферма).

Рассмотрим несколько частных случаев:

уравнение деления окружности.

Пусть , (если  построено, то  также можно построить

Следовательно, правильный пятиугольник можно построить циркулем и линейкой.

Подставим:

 

Строим , потом  Повторяя дугу АВ 3 раза, получим все точки.

Построения иными инструментами

 


Информация о работе «Геометрические построения на плоскости»
Раздел: Математика
Количество знаков с пробелами: 49147
Количество таблиц: 4
Количество изображений: 22

Похожие работы

Скачать
33609
1
0

... документации немалая роль отводится чертежнику-конструктору. Он выполняет рабочие чертежи отдельных деталей по чертежу общего вида изделия(при этом используются геометрические построения),разработанного конструктором, предопределяет технологию изготовления отдельных деталей в зависимости от наличия на предприятии технологического оборудования, отрабатывает конструкции деталей на технологичность и ...

Скачать
249522
15
58

... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...

Скачать
17281
0
1

... прямых и т.д.; углубить имеющиеся знания по геометрии. Гипотеза: мы предполагаем, что сможем решить некоторые геометрические задачи на построение, используя не классический набор инструментов (циркуль и линейку), а набор из циркуля и короткой градуированной веревки. Задачи о построении на местности Геометрия зародилась в глубокой древности, она изучает форму и взаимное расположение фигур в ...

Скачать
12791
0
19

... расстояния между точками довольно велики и нет таких линеек и циркулей, которые могли бы помочь нам. Да и вообще чертить на земле какие-либо линии затруднительно. Таким образом, построения на местности, основываясь на геометрических законах, имеют свою специфику: Во – первых, все прямые не проводятся на земле, а прокладываются, т. е. отмечается на них, например, колышками, достаточно густая сеть ...

0 комментариев


Наверх