1.1. Основные параметры интегральных микросхем

Плотность упаковки – это число элементов электронной схемы в одном кубическом сантиметре объема интегральной микросхемы.

Степень интеграции x определяется количеством элементов n, вхо- дящих в состав интегральной микросхемы.

x = lg n

Микросхема 1 степени интеграции содержит до 10 элементов (мало- масштабная интегральная схема – мис). Микросхема 2 степени интеграции (среднемасштабная – сис) содержит от 10 до 100 элементов. Микросхема 3 степени интеграции содержит от 10² до 10³ элементов и относится к катего-рии больших интегральных микросхем (БИС). Сверхбольшие (СБИС) имеют

степень интеграции более 1000 элементов (табл. 1).

Таблица 1

Уровень

сложности

ИС

Количество

интегрированных

элементов

Параметры функционального

назначения ИС

МИС ≤ 10

Биполярные ячейки, простые логические

элементы, дифференциальные усилительные

каскады

СИС 10 – 100 Триггеры, регистры, сумматоры, операцион- ные усилители, коммутаторы
БИС 100 – 1000

Полупроводниковые запоминающие и ариф-

метико-логические устройства

СБИС > 1000

Микропроцессоры, однокристальные микро-

ЭВМ, аналого-цифровые преобразователи

1.2. Серии и семейства серий интегральных схем

Серия – это комплект из нескольких типов интегральных схем, имею- щих единое конструктивно-технологическое исполнение и предназначен- ных для совместного применения в аппаратуре. Интегральные схемы, входя- щие в серию, имеют единые эксплутационные показатели и используются как совместимые наборы деталей, пригодные для создания электронной ап- паратуры любой степени сложности.

Серии интегральных схем, совместимые друг с другом по логическим

уровням, условиям эксплуатации и конструктивным показателям, могут образовывать семейства серий интегральных схем.

2. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические и запоминающие элементы составляют основу устройств цифровой обработки информации – вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элементы выполняют простейшие логические операции над цифровой информацией: преобразуют по определенным правилам входную информацию в выход-ную. Операции, используемые при обработке цифровой информации, осно-ваны на двоичной системе счисления, представляющей информацию в виде слов – комбинаций символов 1 и 0.

Обработка цифровой информации логическими элементами произво-дится по законам и правилам алгебры логики, разработанной в XIX веке английским ученым Дж. Булем.

Логические преобразования двоичных сигналов включают три элементарные операции:

1.   логическое сложение (дизъюнкцию) или операцию ИЛИ

F=x1+x2+…+xn

2. логическое умножение (конъюкцию) или операцию И

F= x1 · x2·…·xn

2.   логическое отрицание (инверсию) или операцию НЕ

F= x

Определение этих операций дается с помощью таблиц истинности, содержащих перечисление всех возможных сочетаний (наборов) входных переменных (входных слов).

Каждая простая логическая функция может быть технически реализо- вана простыми элементами, к которым относятся элементы И, ИЛИ, НЕ и их комбинации.

На рис. 3 приведены условные обозначения логических элементов и таблицы истинности.

Из простых элементов можно составить сколь угодно сложные логи-ческие устройства, например, счетчики импульсов, регистры, сумматоры, блоки памяти и т.п.

На практике применяют комбинированные элементы, реализующие две логические операции, например, элементы И-НЕ и ИЛИ-НЕ. Они назы-ваются функционально полными, т.к. позволяют реализовать любую логи-ческую функцию. Например, имея набор элементов И-НЕ можно построить схему ИЛИ.

Наименование

функции

 Условное графи-

 ческое обозначение

 Выражение

функции

Таблицы истинности

 x1

0 0 1 1

 x2

0 1 0 1

ИЛИ

y= x1+x2

 y

0 1 1 1
И

 

y= x1 ·x2

 y

0 0 0 1
НЕ

_

y= x1

 y

1 1 1 0
ИЛИ-НЕ

___

y= x1+x2

 

 y

1 0 0 0
И-НЕ

____

y= x1 ·x2

 

 y

1 1 1 0

Рис. 3

Элемент И-НЕ (штрих Щеффера) выполняет операцию

___________

F= x1 · x2 · x3 ·…· xn

Элемент ИЛИ-НЕ (стрелка Пирса) выполняет операцию

_____________

F=x1+x2+ x3+…+xn

Примеры использования функционально полных элементов сведены в таблице 2, где показано, как набором элементов И/-НЕ можно реализовы- вать функции И, ИЛИ, НЕ.

 Таблица 2

Элемент Логические операции
НЕ И ИЛИ

 

И-НЕ

 

y1=x=x ·x

 

 

 

 

 

 

 

 

 

 

 

 т. к. x ·x ·x ·…=x

y2=x1 ·x2= x1 ·x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т. к. x= x

y3= x1 +x2= x1 · x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 т. к. x1 ·x2= x1 +x2  -

 теорема де Моргана

Реализация логических устройств на базе комбинированных элементов упрощает компановку и ремонт устройств.


Информация о работе «Электротехника и основы электроники»
Раздел: Разное
Количество знаков с пробелами: 48653
Количество таблиц: 11
Количество изображений: 0

Похожие работы

Скачать
50684
6
9

... электротехнических и электронных устройств, в которых используется явление резонанса напряжения. Литература 1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58. 2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77. Лабораторная работа №5   КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Цель работы. Ознакомление с методом повышения ...

Скачать
16093
6
1

... и электрические измерения * * *   4.2. Содержание разделов дисциплины Введение Электрическая энергия, особенности ее производства, распределения и области применения. Роль электротехники и электроники в развитии автоматизации производственных процессов и систем управления. Значение электротехнической подготовки для бакалавров и инженеров неэлектротехнических направлений. Связь со ...

Скачать
5452
2
3

ния и тока Uнср Iн ср. 2.  Среднюю мощность нагрузочного устройства Рн ср. 3.  Амплитуду основной гармоники выпрямленного напряжения U ОСН m. 4.  Коэффициент пульсаций р выпрямленного напряжения. 5.  Действующее значение тока нагрузки I. 6.  Полную мощность S источника питания. 7.  Активную мощность Р в сопротивлении нагрузки. 8.  Коэффициент мощности выпрямителя.   Дано: U=40 В, ...

Скачать
33610
0
0

... Теоретические основы электротехники. Изд. 4-е, перераб. и доп. Учебник для энергетич. и электротехнич. специальностей техникумов. М. «Высш. Школа», 1975. 496 с. с ил.3. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники Уч. Пособие для студентов неэлектрических специальностей, средн. специальных уч. Заведений изд. 3-е.-М.: «Высш. Школа», 1998. 752 с. ил.4. Китунович Ф.Г. ...

0 комментариев


Наверх