3.5. Интегральная инжекционная логика (И²Л-логика)
Схемы И²Л выпускаются только в интегральном исполнении. И²Л-схемы работают с весьма малыми перепадами логических уровней и требуют минимальной площади поверхности полупродниковой подложки. Показатель степени ''два'' в обозначении указывает на то, что транзистор, осуществляющий питание (инжектор), работает в режиме двойной инжекции.
На рис. 11 изображен инвертор, выполненный в интегральной инжекционной логике. Питание И²Л-схем осуществляется от источника тока через p-n-p-переход транзисторов VTП, имеющих общую эмиттерную p-область, называемую инжектором. Транзисторы VTП имеют продольную структуру, причем p-область базы транзистора VTП физически совмещена с эмиттерной p-областью транзистора VT.
Рис. 11
Изменение значений переменной X на входе изменяет путь тока инжекции IП = αU∙I. При X=1, соответствующей высокому потенциалу на входе, ток IП поступает на базу транзистора VT, вызывая его насыщение. На выходе устанавливается низкий потенциал, соответствующий логическому ''0'': F =0. При X=0, что соответствует входному потенциалу близкому к нулю, весь ток IП поступает во входную цепь. Транзистор VT закрывается, и на выходе устанавливается высокий потенциал: F =1.
Параметры логических элементов
Средняя потребляемая мощность – Pср
Pср = 0,5(Pº + P¹),
где Pº – мощность потребляемая логическим элементом, находящимся в состоянии ''0'', P¹ – в состоянии ''1''. При возрастании частоты переключений элемента потребляемая мощность может существенно возрасти.
Коэффициент объединения по входу Коб – определяет максимальное число входов логического элемента. Основные логические элементы имеют Коб = 2 – 4. Увеличение числа входов достигается применением специаль-ного устройства – расширителя. При этом удается получить Коб >10.
Коэффициент разветвления по выходу (нагрузочная способность) Кразв, определяет максимальное число аналогичных микросхем, которое можно подключить к данному логическому элементу без нарушения его нормальной работы. Выпускаемые промышленностью логические элементы имеют Кразв = 4 – 10. Увеличить нагрузочную способность можно, подключив к выходу логического элемента буферный усилитель.
Быстродействие – характеризуется временем задержки распрастране-
ния сигнала и определяет быстроту реакции логического элемента при воздействии входного напряжения.
Помехоустойчивость – характеризует невосприимчивость логических элементов к изменению своих состояний под воздействием напряжения помех. Помехоустойчивасть оценивается наибольшим напряжением помехи, которая не вызывает ложного срабатывания логического элемента.
В таблице 3 приведены основные параметры цифровых логических элементов различных типов.
Таблица 3
Параметр | ТТЛ | ЭСЛ | И²Л | п-МОП | КМОП |
Напряжение пи- тания Ек, В Потребляемая мощность Рср, мВт Коб Кразв Быстродействие, нс Генерация помех Уровень допусти- мых помех | 5 2 – 44 2 – 8 10 5 – 20 Сильная 0,8 | -5,2 35 2 – 5 15 0,7 – 3 Отсутствует 0,15 | 1,0 0,01 – 0,1 1 5 – 10 10 –20 Малая 0,1 |
5 0,1 – 1,5 2 – 5 100 – 200 20 –200 Малая 0,5 | 3 – 15 0,01 – 0,1 2 – 5 100 – 200 50 –100 Малая 0,4 Ек |
4. ТРИГГЕРЫ
Триггером называют устройство, обладающее двумя состояниями устойчивого равновесия и способное скачком переходить из одного состоя-ния в другое.
Триггеры являются базовыми элементами при построении счетчиков, регистров, дешифраторов и других устройств импульсной техники.
Характерной особенностью триггеров является способность сохранять двоичную информацию (состояние ''0'' или ''1'') после окончания действия входных импульсов. Это свойство обусловлено тем, что факторами, опре-деляющими состояние триггера, являются не только внешние управляющие сигналы, но и внутренние сигналы самого триггера (сигналы обратной связи). Поэтому триггер может быть использован как элемент памяти, а совокупность триггеров может запомнить и хранить код некоторого числа.
В интегральной минросхемотехнике триггеры выполняют либо на основе логических интегральных элементов, либо как завершенный функциональный элемент в виде микросхемы.
Триггеры можно классифицировать по функциональному признаку и способу управления.
По функциональному признаку различают триггеры R, S, D, T, J-K и других типов.
По способу управления различают асинхронные и тактируемые. В асинхронных триггерах переключение из одного состояния в другое осуществляется непосредственно с поступлением сигнала на информацион-ный вход. В тактируемых триггерах кроме информационных входов имеется вход тактовых импульсов. Переключение происходит только при наличии разрешающего, тактирующего импульса.
... электротехнических и электронных устройств, в которых используется явление резонанса напряжения. Литература 1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58. 2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77. Лабораторная работа №5 КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Цель работы. Ознакомление с методом повышения ...
... и электрические измерения * * * 4.2. Содержание разделов дисциплины Введение Электрическая энергия, особенности ее производства, распределения и области применения. Роль электротехники и электроники в развитии автоматизации производственных процессов и систем управления. Значение электротехнической подготовки для бакалавров и инженеров неэлектротехнических направлений. Связь со ...
ния и тока Uнср Iн ср. 2. Среднюю мощность нагрузочного устройства Рн ср. 3. Амплитуду основной гармоники выпрямленного напряжения U ОСН m. 4. Коэффициент пульсаций р выпрямленного напряжения. 5. Действующее значение тока нагрузки I. 6. Полную мощность S источника питания. 7. Активную мощность Р в сопротивлении нагрузки. 8. Коэффициент мощности выпрямителя. Дано: U=40 В, ...
... Теоретические основы электротехники. Изд. 4-е, перераб. и доп. Учебник для энергетич. и электротехнич. специальностей техникумов. М. «Высш. Школа», 1975. 496 с. с ил.3. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники Уч. Пособие для студентов неэлектрических специальностей, средн. специальных уч. Заведений изд. 3-е.-М.: «Высш. Школа», 1998. 752 с. ил.4. Китунович Ф.Г. ...
0 комментариев