3.5. Интегральная инжекционная логика (И²Л-логика)

Схемы И²Л выпускаются только в интегральном исполнении. И²Л-схемы работают с весьма малыми перепадами логических уровней и требуют минимальной площади поверхности полупродниковой подложки. Показатель степени ''два'' в обозначении указывает на то, что транзистор, осуществляющий питание (инжектор), работает в режиме двойной инжекции.

На рис. 11 изображен инвертор, выполненный в интегральной инжекционной логике. Питание И²Л-схем осуществляется от источника тока через p-n-p-переход транзисторов VTП, имеющих общую эмиттерную p-область, называемую инжектором. Транзисторы VTП имеют продольную структуру, причем p-область базы транзистора VTП физически совмещена с эмиттерной p-областью транзистора VT.

Рис. 11

Изменение значений переменной X на входе изменяет путь тока инжекции IП = αU∙I. При X=1, соответствующей высокому потенциалу на входе, ток IП поступает на базу транзистора VT, вызывая его насыщение. На выходе устанавливается низкий потенциал, соответствующий логическому ''0'': F =0. При X=0, что соответствует входному потенциалу близкому к нулю, весь ток IП поступает во входную цепь. Транзистор VT закрывается, и на выходе устанавливается высокий потенциал: F =1.

Параметры логических элементов

Средняя потребляемая мощность – Pср

Pср = 0,5(Pº + P¹),

где Pº – мощность потребляемая логическим элементом, находящимся в состоянии ''0'', P¹ – в состоянии ''1''. При возрастании частоты переключений элемента потребляемая мощность может существенно возрасти.

Коэффициент объединения по входу Коб – определяет максимальное число входов логического элемента. Основные логические элементы имеют Коб = 2 – 4. Увеличение числа входов достигается применением специаль-ного устройства – расширителя. При этом удается получить Коб >10.

Коэффициент разветвления по выходу (нагрузочная способность) Кразв, определяет максимальное число аналогичных микросхем, которое можно подключить к данному логическому элементу без нарушения его нормальной работы. Выпускаемые промышленностью логические элементы имеют Кразв = 4 – 10. Увеличить нагрузочную способность можно, подключив к выходу логического элемента буферный усилитель.

Быстродействие – характеризуется временем задержки распрастране-

ния сигнала и определяет быстроту реакции логического элемента при воздействии входного напряжения.

Помехоустойчивость – характеризует невосприимчивость логических элементов к изменению своих состояний под воздействием напряжения помех. Помехоустойчивасть оценивается наибольшим напряжением помехи, которая не вызывает ложного срабатывания логического элемента.

В таблице 3 приведены основные параметры цифровых логических элементов различных типов.

 Таблица 3

 

 

 

Параметр

ТТЛ

ЭСЛ

И²Л

п-МОП

КМОП

Напряжение пи-

тания Ек, В

Потребляемая мощность Рср, мВт

Коб

Кразв

Быстродействие,

 нс

Генерация помех

Уровень допусти-

мых помех

5

2 – 44

2 – 8

10

5 – 20

Сильная

0,8

-5,2

35

2 – 5

15

0,7 – 3

Отсутствует

0,15

1,0

 0,01 – 0,1

1

5 – 10

10 –20

Малая

0,1

 

5

0,1 – 1,5

2 – 5

100 – 200

20 –200

Малая

0,5

3 – 15

0,01 – 0,1

2 – 5

100 – 200

50 –100

Малая

0,4 Ек

4.     ТРИГГЕРЫ

Триггером называют устройство, обладающее двумя состояниями устойчивого равновесия и способное скачком переходить из одного состоя-ния в другое.

Триггеры являются базовыми элементами при построении счетчиков, регистров, дешифраторов и других устройств импульсной техники.

Характерной особенностью триггеров является способность сохранять двоичную информацию (состояние ''0'' или ''1'') после окончания действия входных импульсов. Это свойство обусловлено тем, что факторами, опре-деляющими состояние триггера, являются не только внешние управляющие сигналы, но и внутренние сигналы самого триггера (сигналы обратной связи). Поэтому триггер может быть использован как элемент памяти, а совокупность триггеров может запомнить и хранить код некоторого числа.

В интегральной минросхемотехнике триггеры выполняют либо на основе логических интегральных элементов, либо как завершенный функциональный элемент в виде микросхемы.

Триггеры можно классифицировать по функциональному признаку и способу управления.

По функциональному признаку различают триггеры R, S, D, T, J-K и других типов.

По способу управления различают асинхронные и тактируемые. В асинхронных триггерах переключение из одного состояния в другое осуществляется непосредственно с поступлением сигнала на информацион-ный вход. В тактируемых триггерах кроме информационных входов имеется вход тактовых импульсов. Переключение происходит только при наличии разрешающего, тактирующего импульса.


Информация о работе «Электротехника и основы электроники»
Раздел: Разное
Количество знаков с пробелами: 48653
Количество таблиц: 11
Количество изображений: 0

Похожие работы

Скачать
50684
6
9

... электротехнических и электронных устройств, в которых используется явление резонанса напряжения. Литература 1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58. 2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77. Лабораторная работа №5   КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Цель работы. Ознакомление с методом повышения ...

Скачать
16093
6
1

... и электрические измерения * * *   4.2. Содержание разделов дисциплины Введение Электрическая энергия, особенности ее производства, распределения и области применения. Роль электротехники и электроники в развитии автоматизации производственных процессов и систем управления. Значение электротехнической подготовки для бакалавров и инженеров неэлектротехнических направлений. Связь со ...

Скачать
5452
2
3

ния и тока Uнср Iн ср. 2.  Среднюю мощность нагрузочного устройства Рн ср. 3.  Амплитуду основной гармоники выпрямленного напряжения U ОСН m. 4.  Коэффициент пульсаций р выпрямленного напряжения. 5.  Действующее значение тока нагрузки I. 6.  Полную мощность S источника питания. 7.  Активную мощность Р в сопротивлении нагрузки. 8.  Коэффициент мощности выпрямителя.   Дано: U=40 В, ...

Скачать
33610
0
0

... Теоретические основы электротехники. Изд. 4-е, перераб. и доп. Учебник для энергетич. и электротехнич. специальностей техникумов. М. «Высш. Школа», 1975. 496 с. с ил.3. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники Уч. Пособие для студентов неэлектрических специальностей, средн. специальных уч. Заведений изд. 3-е.-М.: «Высш. Школа», 1998. 752 с. ил.4. Китунович Ф.Г. ...

0 комментариев


Наверх