7 Энергия и мощность в электрической цепи. Баланс мощности
В источнике электрической энергии, так же, как и в нагрузке (в резисторах) происходит необратимое преобразование электрической энергии в тепло. Это учитывается внутренним сопротивлением R0 источника ЭДС, показываемого на схеме замещения отдельным резистором, включённым последовательно с ЭДС E.
Работа, совершаемая источником электрической энергии за время t, т.е. работа по разделению зарядов сторонними силами в источнике равна W=E*Q=E*I*t.
В приёмнике электрической энергии при напряжении U и токе I расходуется энергия
Wпр=U*Q=U*I*t=I2 *R*t=U2 *t/R.
Мощность P характеризует интенсивность преобразования энергии из одного вида в другую за единицу времени.
Для цепей постоянного тока мощность источника
, (1.1.5)
а мощность приёмника
(1.1.6)
В системе СИ энергия и мощность измеряются в Джоулях (Дж) и Ваттах (Вт) соответственно.
Для всех величин, введённых выше, применяются кратные и дольные единицы измерения (см. приложение 2).
Энергия часто выражается в киловатт-часах. 1кВт*ч=3,6*106 Дж.
На основании закона сохранения энергии мощность, развиваемая всеми источниками электрической энергии, входящими в электрическую цепь, должна быть равна мощности преобразования электрической энергии в другие виды энергии всеми приёмниками, входящими в эту цепь:
, где (1.1.7)
ΣEiIi – алгебраическая сумма мощностей, развиваемых источниками (Если положительное направление тока через источник ЭДС, то источник ЭДС работает в режиме генератора и произведение E*I>0. Если же направление I и E противоположны, то источник ЭДС потребляет энергию, т.е. работает в режиме приёмника и произведение E*I<0).
ΣRjIj2 – сумма мощностей всех приёмников.
Уравнение (1.1.7) называется уравнением баланса мощности для цепей постоянного тока.
8 Мощность потерь и КПД электрической цепи
В реальной электрической цепи источник электрической энергии имеет внутреннее сопротивление R0, а приёмник соединяется с источником ЭДС линией передачи и изготавливается из проводов, имеющих сопротивление RЛ.
Схема замещения такой цепи имеет вид (рис. 1.3)
a c
E RA
RН
R0 b d
Рис. 1.3
По закону Ома для полной цепи, ток I в цепи равен:
, или R0I+RЛI+RНI=E
Умножив все члены этого уравнения на I, получим уравнение баланса мощности:
R0I2+RЛI2+RНI2=EI, где
EI – мощность, развиваемая источником ЭДС;
R0I2, RЛI2 – мощность потерь в источнике и в линии передачи;
RНI2=UcdI – мощность в приёмнике, т.е. полезная мощность.
Технико-экономические расчёта показывают, что для передачи электрической энергии на большие расстояния выгодно использовать ЛЭП большого напряжения, что увеличивает один из важнейших параметров электрической цепи – коэффициент полезного действия этой цепи (КПД).
КПД электрической цепи это отношение мощности приёмника (полезной мощности) к суммарной мощности всех потребителей (или к мощности, развиваемой источником):
(1.1.8)
КПД линии передачи большой протяжённости достигает 95%.
9 Режимы работы электрической цепи
Электрическая цепь в зависимости от значения RН может работать в различных характерных режимах: номинальном, согласованном, холостого хода и короткого замыкания.
Номинальный режим – это расчётный режим, при котором элементы цепи (источники, приёмники, линии передачи) работают в условиях, соответствующих проектным данным и параметрам.
Номинальные напряжения стандартизированы по ГОСТ 21128-83 и для сетей до 1000В равны 27, 110, 220, 440В – при постоянном токе и 40, 220, 380, 660В – при однофазном переменном токе.
Превышение этих напряжений приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.
Под номинальным током понимается ток, рассчитанный по тепловому режиму работы цепи.
ГОСТ 6827-76 устанавливает, что предпочтительно выбирать номинальные токи, равные 1,00; 1,60; 2,50; 4,00; 6,30 А, а также десятично-дольные и кратные значения этих токов. Таким образом получается шкала 0,1мА до 25кА.
Номинальное значение мощности для источника электрической энергии – это наибольшая мощность, которую источник может отдать во внешнюю цепь без пробоя изоляции и без превышения допустимой температуры нагрева.
Номинальные значения напряжений, токов и мощностей указаны в поспортах изделий.
Согласованный режим – соответствует случаю, когда RН=R0 . При таком режиме мощность приёмника максимальна. Ток в цепи и мощность представляются выражениями:
(1.1.9)
Приравняв нулю производную dP/dRН=0, получим, что действительно RН=R0.
Однако КПД при согласованном режиме низкий:
(1.1.10)
По этой причине работа мощных цепей в согласованном режиме невыгодна. В электрических цепях большой мощности R0<<RН и КПД достаточно высокий.
Режим холостого хода (х. х) и короткого замыкания (к. з) – являются предельными режимами работы электрической цепи.
В режиме холостого хода ток I=0 (внешняя цепь разомкнута, т.е ). Так-как падение напряжения на внутреннем сопротивлении R0 источника равно нулю (), то напряжения на выводах источника электрической энергии Uхх=E. Этот режим применяется для измерения ЭДС источника высокоомным вольтметром.
В режиме короткого замыкания выводы источника соединены между собой накоротко (). Напряжение на приёмнике при этом равно нулю. Сопротивление всей цепи равно внутреннему сопротивлению источника (R0), а ток в цепи достигает максимального значения:
Iк.з.=E/R0 (1.1.11)
Этот ток может вызвать перегрев источника, или даже его повреждение (т.е. режим короткого замыкания электрической цепи является аварийным). Для защиты источников и питательных цепей от токов короткого замыкания применяются плавкие предохранители, автоматические выключатели и другие защитные аппараты.
На рис 1.4 приведены зависимости мощности генератора (источника) P2, напряжение на нагрузке UH, …………….. в нагрузке pH и КПД цепи η от величины тока в нагрузке эти зависимости соответствуют выражениям:
Рис 1.4
Закон Ома и законы Кирхгофа для электрических цепей постоянного тока
Закон Ома устанавливает связь между электрическим током I, протекающим в цепи, электрическим напряжением U.
При анализе работы электрических цепей применяются три формулировки этого закона.
Закон Ома для участка цепи :
Для пассивного участка цепи по закону Ома
, (1.1.13)
Закон Ома для полной цепи:
Если пренебречь сопротивлением проводов в схеме замещения простой неразветвлённой цепи рис.1.3 (Ra=0), то ток в цепи:
(1.1.14)
Закон Ома в обобщённой форме:
Закон Ома может быть записан и для участка цепи (например её любой ветви)содержащей источник ЭДС, с учётом известной разности потенциалов на концах этого участка рис.1.5.
Рис. 1.5
Для этого величина тока определяется выражением:
, (1.1.15 )
В общем случае произвольного числа источников ЭДС и резисторов это выражение имеет вид:
, (1.1.16)
Где ∑E – алгебраическая сумма ЭДС источников;
∑R – суммарное электрическое сопротивление цепи;
Первый Закон Кирхгофа
Первый и второй законы сформулированы Кирхгофом в 1845 году и являются основными законами определяющими решения электрической цепи. Первый закон Кирхгофа применяется к узлам электрической цепи. Он гласит: алгебраическая сумма токов в узле электрической цепи равно нулю:
(1.1.17)
Для узла и электрической цепи рис. 1.6 этот закон даёт выражение:
,
Рис.1.6
Первый закон описывает тот факт, что заряды одного знака не могут накапливаться в узле.
Второй закон Кирхгофа
Второй закон Кирхгофа применяется к контурам электрической цепи. Он формулируется следующим образом: алгебраическая сумма падения напряжения на всех сопротивлениях замкнутого контура равна алгебраической сумме ЭДС, входящих (включённых) в этот контур.
, (1.1.18)
Где n-число резисторов в контуре,
m- число источников ЭДС в контуре.
При записи этого выражения (1.18) задаются произвольно направления обхода и все слагаемые Vk, Ek cовпадающие с направлением обхода берутся со знаком плюс, а не совпадающие – со знаком минус.
Для контура рис 1.7 это выражение будет иметь вид:
Рис. 1.7
Второй закон Кирхгофа описывает тот факт, что при обходе контура и возвращении в конечную точку, потенциал этой точки не мажет измениться, так - как иначе не соблюдался бы закон сохранения энергии.
... неровностей на поверхности анода, т.е. происходит его полировка. 2 Расчётная часть 2.1Задание на курсовую работу Расчет разветвлённой электрической цепи постоянного тока. Для заданной электрической цепи необходимо: 1) Записать систему уравнений по законам Кирхгофа (без расчетов); 2) Определить все токи и ...
чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...
... будущего специалиста к работе на производстве. 1. Анализ электрического состояния линейных электрических цепей постоянного тока Схема электрической цепи постоянного тока: R2 I2 R7 I5 E1,r02 I7 R1 I3 R5 R3 R4 I4 I6 I1 E2,r02 R6 Рис.1.0 ...
... контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат - потенциалы точек с учетом их знака. рис.1.7 1.2 Расчет нелинейных электрических цепей постоянного тока Построить входную вольтамперную характеристику схемы (рис.1.8) Определить токи во всех ветвях схемы и напряжения на отдельных элементах, используя полученные ...
0 комментариев