НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
"ВОЛГОГРАДСКИЙ ИНСТИТУТ БИЗНЕСА"
Кафедра
Математики и естественных наук
Домашняя контрольная работа
Дисциплина
Эконометрика
Тема: Линейные уравнения парной регрессии
Студента (ки)
Иванова Ивана Ивановича
Волгоград 2010
Задача№ 1
По данным приведенным в таблице:
1) построить линейное уравнение парной регрессии y на x;
2) рассчитать линейный коэффициент парной корреляции и оценить тесноту связи;
3) оценить статистическую значимость параметров регрессии и корреляции, используя F-статистику, t-статистику Стьюдента и путем расчета доверительных интервалов каждого из показателей;
4) вычислить прогнозное значение y при прогнозном значении x, составляющем 108% от среднего уровня.
5) оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал;
6) полученные результаты изобразить графически и привести экономическое обоснование.
Таблица №1
По территориям Центрального района известны данные за 1995 г.
Район | Средний размер назначенных ежемесячных пенсий, тыс.руб., y | Прожиточный минимум в среднем на одного пенсионера в месяц, тыс.руб., х |
Брянская обл. | 240 | 178 |
Владимирская обл. | 226 | 202 |
Ивановская обл. | 221 | 197 |
Калужская обл. | 226 | 201 |
Костромская обл. | 220 | 189 |
Московская обл. | 237 | 215 |
Орловская обл. | 232 | 166 |
Рязанская обл. | 215 | 199 |
Смоленская обл. | 220 | 180 |
Тульская обл. | 231 | 186 |
Ярославская обл. | 229 | 250 |
xi | 178 | 202 | 197 | 201 | 189 | 215 | 166 | 199 | 180 | 186 | 250 |
yi | 240 | 226 | 221 | 226 | 220 | 237 | 232 | 215 | 220 | 231 | 229 |
Х | Y |
178 | 240 |
202 | 226 |
197 | 221 |
201 | 226 |
189 | 220 |
215 | 237 |
166 | 232 |
199 | 215 |
180 | 220 |
186 | 231 |
250 | 229 |
Вывод 1. Анализ корреляционного поля данных показывает, что между признаками и в выборочной совокупности существует прямая и достаточно тесная связь. Предполагается, что объясняемая переменная линейно зависит от фактора , поэтому уравнение регрессии будем искать в виде
,
Таблица № 4 Параметры (коэффициенты) уравнения регрессии
Коэффициенты | |
Y-пересечение | 227,7117993 |
Переменная X 1 | -0,003619876 |
На основании этих данных запишем уравнение регрессии: .
Коэффициент называется выборочным коэффициентом регрессии Коэффициент регрессии показывает, на сколько единиц в среднем изменяется переменная при увеличении переменной на одну единицу.
Таблица №5. Корреляционная матрица
Столбец 1 | Столбец 2 | |
Столбец 1 | 1 | |
Столбец 2 | -0,010473453 | 1 |
Для оценки качества уравнения регрессии в целом необходимо проверить статистическую значимость индекса детерминации: проверяется нулевая гипотеза , используется .
Таблица №6
Регрессионная статистика | ||
R-квадрат | 0,000109693 |
.
Т.к. Значение детерминации R-квадрат имеет малое значение, которое менее 1%, то дальнейшее решение не имеет смысла, т.к. вероятность того что прогноз будет верным меньше 1%.
Используя данные, приведенные в таблице: построить линейное уравнение множественной регрессии;
1) оценить значимость параметров данного уравнения и построить доверительные интервалы для каждого из параметров, оценить значимость уравнения в целом, пояснить экономический смысл полученных результатов;
2) рассчитать линейные коэффициенты частной корреляции и коэффициент множественной детерминации, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними;
3) вычислить прогнозное значение y при уменьшении вектора x на 6 % от максимального уровня, оценить ошибку прогноза и построить доверительный интервал прогноза;
Таблица №5
номер наблюдения, i | Накопления семьи, Y (y.e.) | Доход семьи, X1 (y.e.) | Расходы на питание, X 2 (y.e.) |
1 | 2 | 20 | 5 |
2 | 6 | 27 | 6 |
3 | 7 | 26 | 7 |
4 | 5 | 19 | 5 |
5 | 4 | 15 | 5 |
6 | 2 | 15 | 5 |
7 | 7 | 28 | 10 |
8 | 6 | 24 | 7 |
9 | 4 | 14 | 6 |
10 | 5 | 21 | 7 |
11 | 5 | 20 | 10 |
12 | 3 | 18 | 6 |
Таблица №6 Параметры (коэффициенты) уравнения регрессии
Коэффициенты | |
Y-пересечение | -1,767785782 |
x1 | 0,232792618 |
x2 | 0,24953991 |
Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
На основании этих данных запишем уравнение регрессии:
.
Таблица №7 Регрессионная статистика
R-квадрат | 0,663668925 |
Нормированный R-квадрат | 0,588928686 |
! Параметр R-квадрат, представляет собой квадрат коэффициента корреляции rxy2 и называется коэффициентом детерминации. Величина данного коэффициента характеризует долю дисперсии зависимой переменной y, объясненную регрессией (объясняющей переменной x). Соответственно величина 1 - rxy2 характеризует долю дисперсии переменной y, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет: 0,663668, или 66,3%.
Находим, что численное значение , а скорректированный (нормированный, исправленный) коэффициент детерминации равен
1) Для оценки качества уравнения регрессии в целом необходимо проверить статистическую значимость индекса детерминации : проверяется нулевая гипотеза , используется .
Наблюдаемое значение критерия и оценку его значимости находим в Таблице №8
Таблица №8 Дисперсионный анализ:
F | Значимость F |
8,87967358 | 0,007420813 |
! Включаемые в уравнение множественной регрессии факторы должны объяснить вариацию зависимой переменной. Если строится модель с некоторым набором факторов, то для нее рассчитывается показатель детерминации, который фиксирует долю объясненной вариации результативного признака (объясняемой переменной) за счет рассматриваемых в регрессии факторов. А оценка влияния других, неучтенных в модели факторов, оценивается вычитанием из единицы коэффициента детерминации, что и приводит к соответствующей остаточной дисперсии.
Таким образом, при дополнительном включении в регрессию еще одного фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если этого не происходит и данные показатели практически недостаточно значимо отличаются друг от друга, то включаемый в анализ дополнительный фактор не улучшает модель и практически является лишним фактором.
Если модель насыщается такими лишними факторами, то не только не снижается величина остаточной дисперсии и не увеличивается показатель детерминации, но, более того, снижается статистическая значимость параметров регрессии по критерию Стьюдента вплоть до статистической незначимости.
2) Для статистической оценки значимости коэффициентов регрессии () используем статистику Стьюдента.
Проверяется нулевая гипотеза .
Для проверки нулевой гипотезы необходимо знать величину наблюдаемых значений критерия . Их значения и оценки их статистической значимости найдем в Таблице №9
Таблица №9
t-статистика | P-Значение |
-1,127971079 | 0,28850322 |
2,838964459 | 0,01943598 |
1,130728736 | 0,28740002 |
В этой же таблице находим границы доверительных интервалов для каждого из параметров:
Нижние 95% | Верхние 95% |
-5,313097658 | 1,777526094 |
0,047297697 | 0,418287538 |
-0,249694323 | 0,748774142 |
... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...
... и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0: . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов. Проверка мультиколлинеарности факторов может быть ...
трех исследованных моделей. Отбор факторов и показателей для построения функции потребления Исходные данные, характеризующие изменение душевого дохода (Х) и расхода на потребление товара А (Y) приведены в таблице 1. Таблица 1 - Исходные данные Душевой доход (X) (ден. ед) Расход на потребление товара А (Y) (ден. ед) X² X*Y Y² 200,00 114,00 40 000 ...
... взяты за 2003 год. Данные взяты из статистического сборника Регионы России Социально-экономические показатели. 2003. Федеральная служба государственной статистики Построение модели множественной регрессии Расчет параметров Рассчитаем необходимые параметры: Признак Ср. знач. СКО Характеристики тесноты связи βi bi Коэф-ты частной корр. F-критерий фактический ...
0 комментариев