2. Методические рекомендации по решению задач

 

В задачах по курсу общей физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае все векторные величины, характеризующие вращательное движение тела:  направлены вдоль оси вращения, что позволяет сразу переходить к алгебраической (скалярной) записи соответствующих уравнений. Некоторое направление вращения выбирается за положительное, используя, например, направление поступательного движения правого винта (правило буравчика), когда вращение его головки совпадает с направлением вращения твердого тела; естественно, перед величинами, вектора которых антинаправлены положительному направлению, будут использованы знаки «минус». При ускоренном вращении тела знаки всех четырех величин совпадают; при замедленном движении две пары величин   и  имеют противоположные знаки.

Момент силы , действующей на тело, относительно оси вращения определяется по формуле (1.1, раздел 1.1).

Момент импульса  тела, вращающегося относительно неподвижной оси, определяется по формуле (1.4). Для определения момента импульса материальной точки с импульсом  относительно начала координат используют выражение (1.6).

Для системы тел используют выражение  (например, суммарный момент импульса гири массой , прикрепленной на шнуре к вращающемуся маховику радиусом , равен  где  момент импульса движущегося груза  гири, линейная скорость гири и точек цилиндрической поверхности маховика;  момент импульса, вращающегося с угловой скоростью  и обладающего моментом инерции , маховика).

Момент инерции тела зависит в общем случае от его массы, расположения массы в теле, размеров и формы тела и положения оси вращения.

Момент инерции относительно оси вращения:

а) материальной точки (см. формулу (1.8));

б)дискретного твердого тела (см. формулу (1.9));

в) сплошного твердого тела (см. формулу (1.10)).

В случае непрерывного распределения массы тела (сплошное однородное твердое тело), тело делится на бесконечно малые участки массы  и, считая их за материальные точки, находятся моменты инерции этих участков относительно оси вращения, а затем производится интегрирование.

Моменты инерции некоторых тел правильной геометрической формы приведены в таблице 1.

Таблица 1

Тело Ось, относительно которой определяется момент инерции Формула момента инерции

Однородный тонкий стержень массой  и длиной

 Проходит через центр тяжести стержня перпендикулярно стержню.

 Проходит через конец стержня перпендикулярно стержню.

1/12

1/3

Тонкое кольцо, обруч, труба радиусом  и массой , маховик радиусом  и массой , распределенной по ободу

 Проходит через центр перпендикулярно плоскости основания

Круглый однородный диск (цилиндр) радиусом  и массой

 Проходит через центр диска перпендикулярно плоскости основания

1/2

Однородный шар массой  и радиусом

Проходит через центр шара

2/5

Диск массой  и радиусом , толщина которого много меньше его диаметра

 Относительно оси вращения, совпадающей с диаметром диска

1/4

Если ось вращения не проходит через центр масс тела, то момент инерции тела относительно этой оси можно определить по теореме Штейнера: момент инерции тела  относительно произвольной оси  равен сумме моментов инерции этого тела  относительно оси вращения О1О2, проходящей через центр масс тела С параллельно оси , и произведения массы тела на квадрат расстояния  между этими осями (см. Рис. 1), т.е. .

Момент инерции системы отдельных тел равен  (например, момент инерции физического маятника равен , где  момент инерции стержня, на котором крепится диск с моментом инерции ).

Чаще всего при решении задач основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси в случае постоянных момента силы  и момента инерции  используется в виде , где изменение момента импульса вращающего тела равно произведению среднего момента сил, действующего на тело, на время действия этого момента.

В общем случае в момент сил могут входить: вращающий момент сил, момент сил трения, моменты сил натяжения нитей (при решении задач на блоки, через которые перекинута нить и т.д.). При решении задач на блоки необходимо обычно учитывать массу блока, и, следовательно, момент инерции блока, что приводит к тому, что силы натяжения нитей по обе стороны блока не будут одинаковыми и как следствие к появлению вращающего момента сил, равного разности моментов сил по обе стороны блока.

 



Информация о работе «Динамика вращательного движения твердого тела»
Раздел: Физика
Количество знаков с пробелами: 18508
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
16578
6
4

... ВПО «ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет общих математических и естественнонаучных дисциплин Кафедра общей физики ЛАБОРАТОРНАЯ РАБОТА №23 Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси выполнил: студент гр. 5СКб-11 Череповец, 2009/10 уч. Год проверил: ассис. Герасимов Р.А. Введение   ...

Скачать
136506
5
32

... , нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения. ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА Цель работы Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого ...

Скачать
23459
55
11

... (3.2) Здесь L- момент импульса твердого тела относительно некоторой точки, - суммарный момент внешних сил относительно той же самой точки. К уравнениям (3.1) и (3.2), являющимся уравнениями динамики твердого тела, необходимо дать следующие комментарии: 1. Внутренние силы, как и в случае произвольной системы материальных точек, не- влияют на движение центра масс и не могут изменить ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

0 комментариев


Наверх