ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

КАФЕДРА ЭОУП


КОНТРОЛЬНАЯ РАБОТА

по дисциплине "Математические методы и модели в экономике"

Выполнил: студент гр. 4381-С

Кустовский Р.Г.

Проверил: доцент

Коврижных О.Е.

г. Набережные Челны

2010


ЗАДАНИЕ 1

Построить одноиндексную математическую модель задачи линейного программирования. В модели надо указать единицы измерения всех переменных, целевой функции и каждого ограничения

Цех мебельного комбината выпускает трельяжи, трюмо и тумбочки под телевизоры. Норма расхода материала в расчете на одно изделие, плановая себестоимость, оптовая цена предприятия, плановый ассортимент и трудоемкость единицы продукции приведены в таблице. При этом, запас древесно-стружечных плит, досок еловых и березовых 92, 33 и 17 куб.м. соответственно. Плановый фонд рабочего времени 19100 человеко-часов.

Исходя из необходимости выполнения плана по ассортименту и возможности его перевыполнения по отдельным (и даже всем) показателям, постройте модель, на основе которой можно найти план производства, максимизирующий прибыль.

Показатели Изделия
трельяж трюмо тумбочка
Норма расхода материала, куб.м.:
древесно-стружечные плиты 0,042 0,037 0,028
доски еловые 0,024 0,018 0,081
доски березовые 0,007 0,008 0,005
Трудоемкость, чел.-ч. 7,5 10,2 6,7
Плановая себестоимость, ден.ед. 98,81 65,78 39,42
Оптовая цена предприятия, ден.ед. 97,10 68,20 31,70
Плановый ассортимент, шт. 450 1200 290

Решение:

В условии задачи сформулирована цель получение максимальной прибыли при необходимости выполнения плана по ассортименту и возможности его перевыполнения. Поэтому, искомыми величинами, а значит, и переменными задачи являются количество произведенной продукции:

Х1 - количество изготовленных трельяжей.

Х2 - количество изготовленных трюмо.

Х3 - количество изготовленных тумбочек.

Поэтому целевой функцией будет математическое выражение, в которой суммируется прибыль от изготовления каждой продукции. Прибыль является разность между себестоимостью и оптовой ценой продукции.

L = (97,10 – 98,81) *Х1 + (68,2 – 65,78)* Х2 +(31,7 – 39,42)* Х3 =

= –1,71 * Х1+ 2,42 * Х2 – 7,72 * Х3 àmax

Условием является то, что сумма расхода материалов не должно быть больше имеющихся материалов, а так же обязательное условие - выполнение плана. Таким образом, математическая модель задачи будет иметь вид:

ЗАДАНИЕ 2

Решить одноиндексную задачу линейного программирования графическим методом.


Построим следующие прямые:

х1 + х2 = 2 (1)

1 + х2 = 4 (2)

х1 + 2х2 = 8 (3)

х1 = 6 (4)

Для этого вычислим координаты прямых:

Заштрихуем полуплоскости, определяемые и разрешаемые каждым из ограничений неравенств. Определим область допустимых решений , многоугольник АВCDEF.

Построим целевую функцию по уравнению

Нижняя точка пересечения целевой функции и многоугольника – это точка минимума целевой функции.

Найдем координаты точки D ( 2; 0 ).

Минимальное значение целевой функции

L(Х) = L(D) = 1*2 + 3*0 = 2

ЗАДАНИЕ 3

Задача сетевого планирования

По данным варианта необходимо:

1)  построить сетевую модель, рассчитать временные параметры событий (на рисунке) и работ (в таблице);

2)  определить критические пути модели;

3)  оптимизировать сетевую модель по критерию "минимум исполнителей" (указать какие работы надо сдвигать и на сколько дней, внесенные изменения показать на графиках привязки и загрузки пунктирной линией).

Название

работы

Нормальная

длительность

Количество

исполнителей

Вариант 2 (N=11 человек)

1.  D - исходная работа проекта;

2.  Работа E следует за D;

3.  Работы A, G и C следуют за E;

4.  Работа B следует за A;

5.  Работа H следует за G;

6.  Работа F следует за C;

Работа I начинается после завершения B, H, и F

 A 3 5
B 4 7
C 1 1
D 4 3
E 5 2
F 7 3
G 6 6
H 5 1
I 8 5

Информация о работе «Математические методы и модели в экономике»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 7601
Количество таблиц: 4
Количество изображений: 3

Похожие работы

Скачать
44486
4
4

... с помощью двухэтапного метода, совпадает с решением, полученным в среде MS Excel с помощью программной надстройки «Поиск решения». 7. ПРИМЕРЫ ПОСТАНОВОК, ФОРМАЛИЗАЦИИ И РЕШЕНИЯ ПЕРСПЕКТИВНЫХ ОПТИМИЗАЦИОННЫХ УПРАВЛЕНЧЕСКИХ ЗАДАЧ Одним из методов решения задач линейного программирования является графический метод, применяемый для решения тех задач, в которых имеются только две переменные, ...

Скачать
26658
29
0

... или тактические управленческие решения. Исторически сложились две группы способов и приемов: традиционные и математические. Рассмотрим подробнее применение математических методов в экономическом анализе. Математические методы в экономическом анализе Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют ...

Скачать
40642
1
0

... Ю.Н. Математические методы в экономике: Учебник.2-е изд. – М.: МГУ им. М.В. Ломоносова, Издательство «Дело и Сервис», 1999. – 368 с. 7.  Монахов А.В. Математические методы анализа экономики. – Спб: Питер, 2002. – 176 с. 8.  Экономико-математические методы и прикладные модели: Учеб. пособие для вузов /В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др., Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. ...

Скачать
18831
3
5

... : Ресурсы А В С D Наличие Ресурс R1 4 2 1 4 530 Ресурс R2 2 - 2 3 230 Ресурс R3 2 3 1 - 570 Прибыль 15 10 9 13 Нижн. гр. 15 30 0 10 Верхн. гр. 150 300 75 300 Построим математическую модель задачи, обозначив количество выпускаемых изделий через х1, х2, х3, х4, а целевую функцию (валовую маржинальную прибыль) — через F: F(х) = 15х1 + 10х2 + 9х3 + ...

0 комментариев


Наверх