Географические факторы формирования термического состояния и режима рек

139337
знаков
24
таблицы
25
изображений

2.2 Географические факторы формирования термического состояния и режима рек

Тепловой режим и тепловое состояние водотоков обусловлены влиянием различных факторов. Оно прослеживается на зональном, бассейновом, районном, местном и локальном уровнях. В генетическом отношении эти изменения связаны с влиянием на температурный режим рек климатических, гидрологических, гидравлических и морфологических факторов.

Климат определяет общие зональные закономерности изменения температуры воды в реках. Они отражают неравномерное поступление солнечной радиации на земную поверхность в разных регионах планеты вследствие уменьшения угла падения солнечных лучей при увеличении широты местности (Хромов, Петросянц, 2001). Анализ распределения суммарной солнечной радиации (Qr) по территории России, например, показывает, что ее величина изменяется от 2500 до 4800 МДж/(м2 ×год), убывая при переходе от южных широт к северным.

Отражением влияния климата на температуру воды в реках является общая закономерность снижения тепловых характеристик водотоков с увеличением широты местности (Шостакович, 1928). Анализ данных по трем рекам приблизительно равного размера в таежной зоне, зоне смешанных лесов и в лесостепи ЕТР подтверждает эту закономерность (рис. 2.3). Она справедлива, в частности, для рр. Пинега, Сура и Хопер в створах, где площадь их водосбора близка к 50000 км2. Бассейны этих трех рек находятся между 400 и 500 в.д., влияние континентальности климата на термический режим этих рек примерно одинаково. Для сравнения рек в термическом отношении использована характеристика J, соответствующая нормированной сумме среднемесячных температур воды за безледный период года (). Анализ графиков изменения величины J за многолетний период для разных рек (см. рис. 2.3) показывает, что с увеличением широты местности величина J, характеризующая осредненную температуру воды в реке за этот сезон года и соответствующий тепловой сток, заметно уменьшается. Градиент изменения величины J (при переходе от лесостепной к зоне широколиственных лесов) в 1977 г. был равен 1,81×10-3 км-1 и -2,45×10-3 км-1 при переходе от зоны широколиственных лесов к таежной зоне.

Влияние зональности заметно не только при переходе от одного речного бассейна к другому, находящемуся в пределах другой природной зоны, но и внутри отдельных крупных бассейнов. Температура воды в реках постепенно возрастает от их северных к южным участкам русловой сети (Шостакович, 1907; Соколова, 1951 и др.). На больших реках, текущих с севера на юг и пересекающих различные климатические зоны, температура воды в их руслах возрастает от истоков к устью (рис. 2.4). На реках, текущих в обратном направлении, наблюдается понижение температуры воды от истоков к устью (Важнов, 1976). Если река имеет субширотное направление, то различия температуры воды могут отсутствовать вследствие зонального подобия (идентичности) притока солнечной радиации, что подтверждается данными наблюдений. Однако нарушение однородности среднемесячных температур воды возможно вследствие неравномерности распределения солнечной радиации в широтном направлении.

Зональность распределения Qr не строгая – изолинии суммарной солнечной радиации на картах не имеют строго широтного характера. Поэтому на одной широте местности приток солнечного тепла неодинаков в разных регионах страны (табл. 2.1). Это обстоятельство объясняется влиянием континентальности климата. Континентальность климата – изменение режима осадков и температуры воздуха под возрастающим влиянием суши на атмосферу и климатообразующие процессы по мере удаления от моря или океана. На большом расстоянии от их берегов смягчающее влияние океана на климат уменьшается. Одновременно уменьшается облачность и увеличиваются амплитуды суточных и годовых температур.

Таблица 2.1. Широтное изменение суммарной солнечной радиации на территории России, кДж×см-2 ×год-1

Градусы северной широты

Qr на 300 в.д.

Изменение величины Qr при переходе с запада на восток страны (градусы в. д.)

300-500

500-700

700-900

900-1100

1100-1300

1300-1500

1500-1700

70 280,5 4,2 16,8 4,1 12,6 8,4 0 -46,1
60 347,5 16,8 8,3 -4,2 4,2 16,8 - -
50 431,2 46,1 20,9 - - - - -

Например, континентальность климата усиливается с запада на восток на большей части территории России. В этом направлении возрастает и суммарная радиация Qr(рис. 2.5). Анализ этого рисунка показывает, что вдоль параллели 700 с.ш., и начиная с 350 в.д., приток солнечной радиации непрерывно возрастает до 1300 в.д. Для восточных районов величина Qr относительно стабильна, и далее на восток – уменьшается. Возможно, это связано с увеличением влияния Тихого и Ледовитого океанов. Вдоль параллели 600 с.ш. изменение Qr имеет более сложный характер. Общее увеличение притока радиации при переходе от западных к восточным территориям нарушается между 700 и 1000 в.д. Уменьшение притока радиации связано, возможно, с повышением местности (Среднесибирское плоскогорье) и соответствующим увеличением облачности. Далее на восток характер рельефа местности не изменяется, а по высоте понижается, что сопровождается увеличением величины Qr.

Другим фактором нарушения строго широтного распределения Qr являются горные области, которым свойственен особый характер распределения солнечной радиации. Для них картографические обобщения изменчивости величины Qr отсутствуют, так как влияние орографического фактора чрезвычайно разнообразно и очень изменчиво в плане, что создает трудности в измерениях на метеостанциях и обобщении этих данных. Рельеф оказывает влияние на температуру воды в реках вследствие орографического снижения.

Она уменьшается с высотой на 0,60С на каждые 100 м подъема и повышается на 10С на 100 м, когда воздух опускается с гор в долины (Хромов, Петросянц, 2001). Некоторое влияние на этот процесс оказывают и отличия в распределении солнечной радиации на склонах разной экспозиции, особенности питания рек в предгорьях и на равнинных участках. Большие уклоны определяют повышенные скорости течения, интенсивное перемешивание воды в реках. Это приводит к увеличению скорости теплообмена с окружающей средой (атмосферой и дном), а также к относительной однородности температуры воды в поперченном сечении.

Высоту местности можно относить к региональным и к местным факторам формирования температурного режима рек. Зависимость температуры воды в реках от высоты местности (рис. 2.6) отражает влияние совокупности факторов, характерных для территории, по которой она протекает. Она изменятся даже для небольших возвышенностей. Например, для Приволжской и Смоленско-Московской возвышенностей температура воды зависит от двух факторов – от расстояния до истока и от высоты местности. На одной широте и при разной высоте разность температуры воды может достигать 10–150С, что является обычной ситуацией для рек Средней Азии и Кавказа (Соколова, 1951).

Зональный фактор изменения температуры воды связан не только распределением суммарной радиации. Низкая относительная влажность в Средней Азии приводит к большим потерям тепла на испарение, что может снижать температуру воды (Соколова, 1951).

Важным фактором изменения температуры речной воды бассейнового масштаба, является влияние синоптических условий и отдельных воздушных масс на тепловое состояние рек. На реках разного размера оно выражается по-разному: крупные атмосферные вихри, определяя прохождение теплых и холодных воздушных масс, оказывают влияние на температуру воды малых рек, участков крупных и средних рек. Чем больше площадь водосбора, тем больше число воздушных масс, которые оказывают воздействие на тепловое состояние рек. Таким образом, температура воды в малых реках и их бассейнах целиком определяется чаще всего какой-либо одной воздушной массой, тогда как температура средних и крупных рек и различных частей их бассейнов формируется под влиянием совокупности разнородных воздушных масс.

Синоптические факторы определяют температуру воды вследствие облачности и изменения притока Qr днем и ночью. Днем температура воды повышается вследствие интенсивного притока солнечной радиации, а ночью – понижается, так как теплой поток от водной массы к атмосфере преобладает. При наличии сплошной облачности суточный ход температуры воды сильно сглажен по сравнению с ясной погодой. Это связано с регулированием притока радиации облачностью – вода нагревается только за счет рассеянной радиации. Ночью облачность предупреждает и охлаждение водной массы, вследствие усиления парникового эффекта и повышения температуры воздуха, связанного с температурой воды уравнением (2.14).

К бассейновым факторам изменения температуры воды относятся факторы, влияющие на ее величину в бассейнах малых или на участках больших и средних рек. Одним из этих факторов является размер реки. Его влияние тесно связано с воздействием синоптических условий, формирующих тепловой баланс на верхней поверхности воды. При равной скорости теплообмена на границе «вода-воздух» в соответствии с формулой (2.5) изменение температуры воды будет больше в том водном объекте, который имеет меньший объем. Однако, эта простая закономерность требует уточнения.

Объем воды на данном участке реки приблизительно равен произведению средней глубины(h), средней ширины реки (B) и длины участка (l). Удельная (на единицу площади) величина теплообмена с атмосферой при одинаковых синоптических условиях равна для малой и большой рек. Количество тепла, поступающего к объему воды на участке реки за единицу времени, зависит только от удельного теплообмена на поверхности реки и от средней глубины реки. Чем меньше средняя глубина реки, тем быстрее она реагирует на изменение атмосферных условий и, наоборот, чем больше средняя глубина реки, тем изменчивость температуры воды в реке меньше. Большая средняя глубина соответствует и большим расходам воды. Поэтому крупные реки имеют меньшую изменчивость температуры воды за единицу времени, по сравнению с малыми реками. Изменение температуры воды в малой реке за сутки может достигать нескольких градусов (до 90С), а на крупных реках – 1–20С (Соколова, 1951).

На рис. 2.7 приведен график, характеризующий изменение температуры в течение года в близких природных условиях на реках различного размера. Река Емца имеет площадь водосбора 13400 км2 (средняя река), а Онега – 55900 км2 (крупная река). Как видно на графике, весной, в период нагревания, температура воды на р. Емца выше по сравнению с онежской водой, что объясняется относительно более быстрой реакцией вод Емцы на изменение синоптических условий. Аналогичная ситуация и в период охлаждения: изменение температуры воды в р. Емца более интенсивно, чем в р. Онега. В результате температура ее вод оказывается ниже, по сравнению с рекой меньшего размера.

Такая закономерность может нарушаться вследствие впадения боковых притоков. Притоки могут формировать местный сток в других природных условиях, что приводит к их отепляющему или охлаждающему воздействию на водную массу основной реки.

На температуру воды в реках в различные фазы водного режима влияет соотношение источников питания рек. Оно влияет на среднюю температуру воды в русловой сети и на температуру воды ее отдельных участков. Разгрузка подземных вод изменяет температуру воды в реке в зависимости от сезона года. Летом подземные воды имеют температуру относительно более низкую, поэтому они оказывают охлаждающее влияние на температуру воды в реках. Зимой обратная ситуация: подземные воды отепляют речную водную массу.

Пример влияния этого фактора на температуру воды в реках дают реки черноморского побережья между гг. Новороссийск и Батуми. Они могут иметь подземное и дождевое питание. В разные сезоны года подземные воды оказывают как отепляющее (зимой), так и охлаждающее воздействие (лето). В летний период температуры воды вследствие теплообмена с атмосферой нагреваются, в зимний период температура воды этих рек, несмотря на теплообмен с атмосферой и благодаря влиянию грунтовых вод, не опускается ниже 40C.

Реки с существенным ледниковым питанием (Бзыбь, Мзымта, Кодори и Риони) наоборот имеют пониженную температуру. Она не превышает 100С в нижнем течении, а в истоке составляет 0,1–0,30С (Соколова, 1951). Таким образом, ледниковые воды всегда оказывают охлаждающее воздействие на основной объем воды в русле реки.

Некоторое влияние на температуру воды на участках рек оказывают местные факторы. Вследствие изменения прозрачности воды, скорости течения, наличия или отсутствия водной растительности, наличия затененности водной поверхности, температура на разных участках рек отличается от фоновых значений. Влияние этих факторов обусловлено их воздействием на теплообмен водной массы и атмосферы. Например, повышенная скорость течения приводит к усилению теплообмена с атмосферой вследствие усиления турбулентного теплообмена. Водная растительность замедляет течение, способствует образованию застойных зон, где вода сильно прогревается. При малой прозрачности воды солнечная радиация поглощается в верхнем слое, толщиной 5–10 см и не проникает глубже, что приводит к увеличению температурных градиентов по глубине реки. Влияние этих факторов на годовой термический режим незначительно. Тем не менее, при изучении формирования теплового режима реки по глубине, ширине и длине, их следует учитывать, так как в этих пространственно-временных масштабах они могут иметь существенное значение.

Температура воды в реках изменяется по их длине. Для многих рек можно выделить участки, по длине которых температура воды повышается, стабильна или уменьшается. Это обусловлено изменениями в сочетании вышеперечисленных факторов, определяющих температуру воды в реках, по длине водотоков. Например, температура воды в направлении от истока к устью в верховьях малых рек в теплый период года закономерно повышается. Это обусловлено постепенным уменьшением доли грунтовых вод в формировании стока. Для горных рек (независимо от преобладающего типа питания) аналогичная закономерность – увеличение температуры с удалением от истока в теплый период года, обусловлена орографическими эффектами изменениями температуры воздуха и воды.

Важным фактором формирования термического режима и состояния водотоков на локальных участках рек является антропогенное влияние (их «тепловое загрязнение»). Под этим термином понимается комплекс направленного изменения теплового стока. Тепловое загрязнение различается по типу и масштабам воздействия на температурный фон в реке. Наиболее ощутимое воздействие на термический режим рек и водотоков оказывают теплоэнергетика, промышленно-коммунальное водоснабжение и регулирование стока воды.

Теплоэнергетика изменяет термический режим рек вследствие сбросами в их русла подогретых вод. При прочих равных условиях влияние теплоэнергетических предприятий на термический режим определяется соотношением бытовых расходов в реке и величиной забираемой воды на охлаждение и разницей температур речной и охлаждающей воды. Относительно холодная вода забирается из водного объекта для охлаждения конденсаторов ГРЭС, АЭС и ТЭС. На реках чаще всего используется прямоточная система водоснабжения, которая подразумевает сброс подогретых вод в те же водные объекты, из которых был произведен водозабор. Температура сбросных вод тепловых электростанций в этом случае превышает естественную на 8–120С, а иногда и более. Зона подогретых вод на крупных ГРЭС прослеживается на площади десятков квадратных километров. Особенно отчетливо влияние сбросных вод ГРЭС на реки проявляется в зимний период – в районе электростанций ледостав не образуется. Например, ниже Яйвинской ГРЭС река не замерзает на протяжении около 40 км (Леонов, 1977).

Если сбросы подогретых вод с предприятий теплоэнергетики имеют локальную привязку к местности, то сбросы промышленных и коммунальных предприятий имеют рассредоточенный характер. Например, сброс подогретых промышленных и коммунальных вод с предприятий Волгограда происходит на протяжении 70 км Волги. Наиболее подогретыми водами являются сбросные воды металлургических, коксохимических, нефтеперерабатывающих, некоторых химических заводов – температура их сбросных вод превышает естественную на 8–400С. Температура сбросных коммунальных вод превышает температуру речных вод на 4–80С и зависит от величины расхода сбросных вод, сезона года (лето, зима), рода предприятия, наличия очистных сооружений, отстойников и т.д.

Вопрос изменения термического режима водотоков при сооружении водохранилищ изучен относительно хорошо (Вендров, 1970; Одрова, 1987). Их влияние обусловлено наличием в относительно глубоких водохранилищах водных масс разной температуры. В летний период происходит их температурное расслоение на относительно более теплые приповерхностные воды эпилимниона и более холодные придонные воды гиполимниона, из которого обычно происходит водозабор. На особо глубоких водохранилищах температура поверхностных водных масс может превышать температуру придонных на 10–150С. В результате летом в нижнем бьефе водохранилищ температуры воды понижены относительно естественного состояния. Зимой у дна водохранилища скапливается вода с температурой, близкой к температуре наибольшей плотности (40С), которая повышает температуру воды в нижнем бьефе относительно естественных условий, препятствует образованию ледяного покрова, способствует наличию полыньи (Одрова, 1979 и др.). Например, на р. Сулак ниже плотины Чиркейской ГЭС температура воды в среднем на 2–30С ниже фоновых значений в летний период. К устью реки прогрев воды в апреле-августе приводит к увеличению ее температуры на 0,5–1,30С. Это связано с особенностями теплового баланса реки в условиях продольного уменьшения расходов воды вследствие забора воды на орошение.



Информация о работе «Особенности термического режима рек»
Раздел: Геология
Количество знаков с пробелами: 139337
Количество таблиц: 24
Количество изображений: 25

Похожие работы

Скачать
224699
13
7

... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений.   1.4 Экономические последствия строительства и эксплуатации водохранилищ   1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...

Скачать
49958
1
0

... и хищниками. Прежде всего, поедаются более крупные, т.е. более заметные, рачки. Иначе говоря, хищничество носит избирательный характер.[7] Глава 3. Ресурсы и охрана озёр   3.1 Природные ресурсы   Озера таят в себе огромные богатства. Озера – это запасы пресной воды и рыбы, добыча полезных ископаемых и транспортные перевозки, источники электроэнергии и курорты. Пресноводные озера являются ...

Скачать
42773
0
2

... СТС, 9- уровень подземных вод, 10- направление движения подземных вод, 11- буровые скважины В южных районах криолитозоны (при островном расположении ММП) неконтактирующие подземные воды отделены от подошвы мерзлой зоны водопроницаемыми породами, имеют ненапорный свободный уровень и связаны в единую систему с таликами, разделяющими мерзлые острова (рис.1, Ж). Межмерзлотные и внутримерзлотные ...

Скачать
39662
0
0

... выделяется один максимум после дня летнего солнцестояния и один минимум - после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5°, в континентальном 10-20°. В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой ...

0 комментариев


Наверх