5.2 Натурные данные
Данных фактических наблюдений над распределением температуры в поперечном сечении потока мало, что находится в определенном противоречии с Наставлениями к выбору места измерения температуры воды на гидрологических постах. Они определяют необходимость производства наблюдений за температурой воды по ширине реки, однако в литературе соответствующие данные найти не удалось. Поэтому приходиться опираться на эпизодические наблюдения, произведенные на р. Ангаре (Верещагин, 1933), на рр. Енисей, Ишим и Селенга (Шостакович, 1928; Ванеева, Панкратьева, 1941), на рр. Лена, Индигирка, Оленек, а также рр. Луга, Ока, Самара, Алматинка, Караткал и Аму-Дарья (табл. 5.1) (Соколова, 1951). Данные распределения температуры воды по ширине потока, приведенные в этой работе, не имеют привязки по расстоянию относительно берегов. Поэтому при дальнейшем анализе будем считать, что температурные вертикали назначались равномерно по ширине потока.
При изучении процессов смешения водных масс Волги и Вазузы (Аппель и др., 1980) 5–9 августа 1975 г. получено 8 профилей поперечного распределения температуры воды. Два из них находились в русле Волги и Вазузы (выше узла их слияния), а 6 профилей – ниже узла слияния на участке реки длиной около 4,2 км (см. рис. 4.1). В статье приведены данные по семи поперечным профилям (по каким-то причинам данные на третьем профиле не приведены).
Таблица 5.1. Распределение температуры воды в поперечном сечении рр. Караткал и Аму-Дарья
Река | Пост | Время | Дата | Вертикали | ||||
1 | 2 | 3 | 4 | 5 | ||||
Каратал | Уш-Тюбе | 8:00 | 20.09.1949 | 13,8 | 13,8 | 13,8 | 13,6 | 13,3 |
8:00 | 15.09.1949 | 11,7 | 11,7 | 11,8 | 11,8 | 11,8 | ||
10:00 | 10.09.1949 | 14,6 | 14,5 | 14,5 | 15 | 15,7 | ||
12:00 | 30.09.1949 | 12,5 | 12,5 | 12,5 | 13,7 | - | ||
12:00 | 05.09.1949 | 15,9 | 15,8 | 15,8 | 16 | 17,1 | ||
18:00 | 25.09.1949 | 13,9 | 13,9 | 13,9 | 14 | 14,3 | ||
Аму-Дарья | Чатлы | июнь | 24 | 27,2 | 24,1 | 24,3 | 24,4 | |
июль | 24 | 24,1 | 24,2 | 24,3 | 24,4 | |||
август | 23,2 | 23,2 | 23,3 | 23,4 | 23,5 | |||
сентябрь | 17,1 | 17,2 | 17,2 | 17,3 | 17,4 | |||
октябрь | 16 | 16,1 | 16,2 | 16,2 | 16,3 |
Исключение составляет профиль №1, где измерения между 53–98 м от уреза левого берега выполнялись в 14–16 часов, а остальные – в 12–14 часов. Температура воды для этих двух периодов значительно отличалась по величине. Температура воды в Волге и Вазузе за период наблюдений практически была одинакова, поэтому для анализа масштабов зоны смешения использовалась только электропроводность воды. Некоторые результаты этого исследования приведены в табл. 5.2 (все данные приведены в Приложении 4). Они характеризуют наличие значимых аномалий температуры воды (0,30С) лишь в 7 м от левого и 12,5 м от правого берега р. Волги.
Таблица 5.2. Распределение поверхностной температуры воды по ширине р. Волги выше узла впадения р. Вазуза
L, м от л.б | 1,8 | 4,3 | 6,8 | 9,3 | 11,8–21,8 | 24,3 | 26,8 | 29,3 | 31,8 | 34 | 36,8 | 39,3 |
Темпера-тура, 0С | 22,4 | 22,2 | 22,2 | 22,1 | 22,1 | 22,1 | 22,2 | 22,3 | 22,3 | 22,3 | 22,4 | 22,4 |
В анализе поперечного распределения температуры воды использованы данные автора, полученные на р. Оке (рис. 5.1), в июне 2007 г. (см. гл. 4). Представление о неоднородности поверхностной температуры воды по ширине потока дает (табл. 5.3). Аномалии температуры воды не превышали 0,290С.
Таблица 5.3. Распределение поверхностной температуры воды в поперечном сечении р. Ока (д. Трегубово, июнь 2007 г.)
L, м от л.б | 10 | 42 | 82 | 130 | 189 | 239 | 262 |
Температура, 0С | 23,39 | 23,23 | 23,13 | 23,10 | 23,10 | 23,19 | 23,29 |
Дополнительные сведения автором получены в районе слияния рр. Протва и Исьма в июле 2008 г. (см. гл. 4). Для анализа использованы и данные распределения поверхностной температуры воды по ширине потока на плесе и перекате р. Протва и один из температурных профилей (№6) на р. Исьма.
... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений. 1.4 Экономические последствия строительства и эксплуатации водохранилищ 1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...
... и хищниками. Прежде всего, поедаются более крупные, т.е. более заметные, рачки. Иначе говоря, хищничество носит избирательный характер.[7] Глава 3. Ресурсы и охрана озёр 3.1 Природные ресурсы Озера таят в себе огромные богатства. Озера – это запасы пресной воды и рыбы, добыча полезных ископаемых и транспортные перевозки, источники электроэнергии и курорты. Пресноводные озера являются ...
... СТС, 9- уровень подземных вод, 10- направление движения подземных вод, 11- буровые скважины В южных районах криолитозоны (при островном расположении ММП) неконтактирующие подземные воды отделены от подошвы мерзлой зоны водопроницаемыми породами, имеют ненапорный свободный уровень и связаны в единую систему с таликами, разделяющими мерзлые острова (рис.1, Ж). Межмерзлотные и внутримерзлотные ...
... выделяется один максимум после дня летнего солнцестояния и один минимум - после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5°, в континентальном 10-20°. В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой ...
0 комментариев