5.2 Натурные данные

Данных фактических наблюдений над распределением температуры в поперечном сечении потока мало, что находится в определенном противоречии с Наставлениями к выбору места измерения температуры воды на гидрологических постах. Они определяют необходимость производства наблюдений за температурой воды по ширине реки, однако в литературе соответствующие данные найти не удалось. Поэтому приходиться опираться на эпизодические наблюдения, произведенные на р. Ангаре (Верещагин, 1933), на рр. Енисей, Ишим и Селенга (Шостакович, 1928; Ванеева, Панкратьева, 1941), на рр. Лена, Индигирка, Оленек, а также рр. Луга, Ока, Самара, Алматинка, Караткал и Аму-Дарья (табл. 5.1) (Соколова, 1951). Данные распределения температуры воды по ширине потока, приведенные в этой работе, не имеют привязки по расстоянию относительно берегов. Поэтому при дальнейшем анализе будем считать, что температурные вертикали назначались равномерно по ширине потока.

При изучении процессов смешения водных масс Волги и Вазузы (Аппель и др., 1980) 5–9 августа 1975 г. получено 8 профилей поперечного распределения температуры воды. Два из них находились в русле Волги и Вазузы (выше узла их слияния), а 6 профилей – ниже узла слияния на участке реки длиной около 4,2 км (см. рис. 4.1). В статье приведены данные по семи поперечным профилям (по каким-то причинам данные на третьем профиле не приведены).


Таблица 5.1. Распределение температуры воды в поперечном сечении рр. Караткал и Аму-Дарья

Река Пост Время Дата Вертикали
1 2 3 4 5
Каратал Уш-Тюбе 8:00 20.09.1949 13,8 13,8 13,8 13,6 13,3
8:00 15.09.1949 11,7 11,7 11,8 11,8 11,8
10:00 10.09.1949 14,6 14,5 14,5 15 15,7
12:00 30.09.1949 12,5 12,5 12,5 13,7 -
12:00 05.09.1949 15,9 15,8 15,8 16 17,1
18:00 25.09.1949 13,9 13,9 13,9 14 14,3
Аму-Дарья Чатлы июнь 24 27,2 24,1 24,3 24,4
июль 24 24,1 24,2 24,3 24,4
август 23,2 23,2 23,3 23,4 23,5
сентябрь 17,1 17,2 17,2 17,3 17,4
октябрь 16 16,1 16,2 16,2 16,3

Исключение составляет профиль №1, где измерения между 53–98 м от уреза левого берега выполнялись в 14–16 часов, а остальные – в 12–14 часов. Температура воды для этих двух периодов значительно отличалась по величине. Температура воды в Волге и Вазузе за период наблюдений практически была одинакова, поэтому для анализа масштабов зоны смешения использовалась только электропроводность воды. Некоторые результаты этого исследования приведены в табл. 5.2 (все данные приведены в Приложении 4). Они характеризуют наличие значимых аномалий температуры воды (0,30С) лишь в 7 м от левого и 12,5 м от правого берега р. Волги.

Таблица 5.2. Распределение поверхностной температуры воды по ширине р. Волги выше узла впадения р. Вазуза

L, м от л.б 1,8 4,3 6,8 9,3 11,8–21,8 24,3 26,8 29,3 31,8 34 36,8 39,3

Темпера-тура, 0С

22,4 22,2 22,2 22,1 22,1 22,1 22,2 22,3 22,3 22,3 22,4 22,4

В анализе поперечного распределения температуры воды использованы данные автора, полученные на р. Оке (рис. 5.1), в июне 2007 г. (см. гл. 4). Представление о неоднородности поверхностной температуры воды по ширине потока дает (табл. 5.3). Аномалии температуры воды не превышали 0,290С.

Таблица 5.3. Распределение поверхностной температуры воды в поперечном сечении р. Ока (д. Трегубово, июнь 2007 г.)

L, м от л.б

10

42

82

130

189

239

262

Температура, 0С

23,39

23,23

23,13

23,10

23,10

23,19

23,29

Дополнительные сведения автором получены в районе слияния рр. Протва и Исьма в июле 2008 г. (см. гл. 4). Для анализа использованы и данные распределения поверхностной температуры воды по ширине потока на плесе и перекате р. Протва и один из температурных профилей (№6) на р. Исьма.


Информация о работе «Особенности термического режима рек»
Раздел: Геология
Количество знаков с пробелами: 139337
Количество таблиц: 24
Количество изображений: 25

Похожие работы

Скачать
224699
13
7

... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений.   1.4 Экономические последствия строительства и эксплуатации водохранилищ   1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...

Скачать
49958
1
0

... и хищниками. Прежде всего, поедаются более крупные, т.е. более заметные, рачки. Иначе говоря, хищничество носит избирательный характер.[7] Глава 3. Ресурсы и охрана озёр   3.1 Природные ресурсы   Озера таят в себе огромные богатства. Озера – это запасы пресной воды и рыбы, добыча полезных ископаемых и транспортные перевозки, источники электроэнергии и курорты. Пресноводные озера являются ...

Скачать
42773
0
2

... СТС, 9- уровень подземных вод, 10- направление движения подземных вод, 11- буровые скважины В южных районах криолитозоны (при островном расположении ММП) неконтактирующие подземные воды отделены от подошвы мерзлой зоны водопроницаемыми породами, имеют ненапорный свободный уровень и связаны в единую систему с таликами, разделяющими мерзлые острова (рис.1, Ж). Межмерзлотные и внутримерзлотные ...

Скачать
39662
0
0

... выделяется один максимум после дня летнего солнцестояния и один минимум - после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5°, в континентальном 10-20°. В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой ...

0 комментариев


Наверх