5.3 Анализ результатов натурных исследований
По измерениям на Оке (Соколова, 1951) изменение температуры воды в поперечном сечении (Δθп) в различные месяцы колебалось от 0,10С в июне до 0,60С в сентябре и октябре (при расчете этих величин производилось осреднение данных за утренние и вечерние сроки наблюдений). Наибольшие величины Δθп наблюдались в июне в утренние (до 1,60С) и дневные часы (до 0,80С). Измерения на р. Амударья (кишл. Чатлы) также показали небольшие среднемесячные величины Δθп: 0,30С в июне, августе, сентябре и октябре, и 0,40С в июле (Соколова, 1951). Данные срочных наблюдений на р. Каратал (пост Уш-Тюбе) показали большую изменчивость температуры воды в поперечном сечении потока: 0,1–0,5 утренние (8:00) и вечерние (18:00) часы и 1,2–1,3 в 10:00 – 12:00. Эти отличия дают представления о роли теплообмена между водной массой и атмосферой для рек различного размера, находящихся в разных климатических и орографических условиях.
Измерения на р. Индигирка (пос. Воронцово) в сентябре 1942 г. показали (Соколова, 1951), что величина Δθп изменяется от 0 до 10С, а в среднем она равна 0,360С. Наблюдения на р. Оленек (пост. Сухана) в июле – сентябре 1940 г. демонстрируют аналогичную (среднюю за период измерений) величину Δθп = 0,280С при диапазоне изменения аномалий 0,11 – 0,390С (Соколова, 1951). Наибольшая изменчивость температур в поперечном сечении обнаружена на р. Лена (с. Солянка). В июне–октябре среднее значение Δθп составляло 2,420С при диапазоне изменчивости Δθп от 0,4 до 5,850С. Повышенные величины Δθп, вероятно, связаны с большим размером реки. Ширина Лены составляла 1,4 км, а всех других рассмотренных рек – не превышала 500 м.
Для Волги и Вазузы изменение температуры воды по ширине рек в среднем составляло 0,980С при диапазоне величины Δθп = 0,2 ¸3,10С. Повышенные значения Δθп связаны, вероятно, с более распластанным руслом, наличием больших по площади мелководных зон, где наблюдается более интенсивное изменение теплосодержания воды. Средние величины поперечных градиентов температуры воды на разных профилях Волги и Вазузы (см. рис. 4.1) представлены в табл. 5.4. Из анализа таблицы следует, что средние по профилю температурные градиенты в большинстве случаев не превышают величины 0,10С/м и больше 0,010С/м. Средняя величина градиентов для Волги и Вазузы составляет 0,0510С/м. Величина градиентов температуры воды в разных створах рек колеблется от 0 до 0,540С/м. Наибольшие градиенты наблюдаются в прибрежных зонах потоков. Показателем этого может служить средний градиент для Волги и Вазузы без учета значений прибрежных градиентов. Эта величина равна 0,260С/м, т.е. в два раза меньше по сравнению со средней величиной при учете теплового состояния прибрежных зон.
Таблица 5.4. Средние градиенты температуры воды в створах рр. Волга и Вазуза
№ профиля | 0 (Вазуза) | 0 (Волга) | 1а | 1б | 2 | 4 | 5 | 6 | 7 |
gradθ,0C/м | 0,12 | 0,015 | 0,09 | 0,06 | 0,09 | 0,02 | 0,04 | 0,01 | 0,01 |
Измерения автора на р. Оке в июне 2007 г. обнаружили максимальное изменение температуры воды от 0,23 до 0,690С в разных поперечных сечениях (рис. 5.2). Средняя величина аномалий температуры для всей реки 0,360С. Средний по каждому профилю поперечный градиент температуры воды изменялся от 0,00166 до 0,005230С/м при среднем значении 0,00310С/м (эта же величина является средней характеристикой gradθ для всей реки). Величина максимального gradθ изменяется для разных профилей от 0,0028 до 0,140С/м. Наибольшая величина градиентов чаще всего характерна для прибрежных зон водного потока: без учета береговых значений средний градиент изменения температуры воды в поверхностном слое для Оки равен 0,00150С/м, т.е., как и на Волге, Вазузе, прибрежные зоны потока обеспечивают поперечную изменчивость температуры воды на 50%.
В периоды дневного, синоптического или сезонного нагревания температура воды быстрее повышается у берегов, чем на стрежне потока (рис. 5.1). В периоды ночного, синоптического или сезонного охлаждения водной массы температура у берегов ниже, чем на стрежне потока (рис. 5.3). Повышенная изменчивость температуры прибрежной части рек связана не только с меньшей глубиной водного потока в этой части русла, но и, вероятно, с влиянием температуры берегов, которые, в силу меньшей теплоемкости, реагируют на изменение составляющих теплового баланса земной поверхности быстрее, чем вода.
... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений. 1.4 Экономические последствия строительства и эксплуатации водохранилищ 1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...
... и хищниками. Прежде всего, поедаются более крупные, т.е. более заметные, рачки. Иначе говоря, хищничество носит избирательный характер.[7] Глава 3. Ресурсы и охрана озёр 3.1 Природные ресурсы Озера таят в себе огромные богатства. Озера – это запасы пресной воды и рыбы, добыча полезных ископаемых и транспортные перевозки, источники электроэнергии и курорты. Пресноводные озера являются ...
... СТС, 9- уровень подземных вод, 10- направление движения подземных вод, 11- буровые скважины В южных районах криолитозоны (при островном расположении ММП) неконтактирующие подземные воды отделены от подошвы мерзлой зоны водопроницаемыми породами, имеют ненапорный свободный уровень и связаны в единую систему с таликами, разделяющими мерзлые острова (рис.1, Ж). Межмерзлотные и внутримерзлотные ...
... выделяется один максимум после дня летнего солнцестояния и один минимум - после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5°, в континентальном 10-20°. В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой ...
0 комментариев