МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

КУРСОВАЯ РАБОТА

по дисциплине «Общая химическая технология»

на тему:

СИНТЕЗ И АНАЛИЗ ХТС В ПРОИЗВОДСТВЕ АЦЕТОНА

Выполнил:

студент группы

Проверил:

2008 г.


1. Содержание

 

1.  Содержание 2

2.  Задание

3.  Введение

4.  Синтез ХТС

Обоснование создания эффективной ХТС

Определение технологической топологии ХТС

Установление технологических и конструкционных

параметров ХТС, технологических параметров

режима и потоков

Химическая модель ХТС

Функциональная модель ХТС

Структурная модель ХТС

Операторная модель ХТС

Технологическая схема ХТС

5.  Анализ ХТС

Представление изучаемого объекта в виде

иерархической структуры ХТС

Построение математической модели ХТС

Изучение свойств и эффективности

функционирования ХТС

6.  Заключение


2. Задание

 

Какое количество гидроперекиси изопропилбензола необходимо, если известно, что в процессе разложения получается 6 т. толуола, степень разложения 80 %

 

3. Введение

Ацетон СН3СОСН3 известен с 1732 г как продукт сухой пе­регонки солей уксусной кислоты и ранее назывался пироуксусным эфиром. Состав ацетона определили Ю. Либих и Ж. Дюма в 1832 г., а А. Уильямсон установил его строение (1852 г), ко­торое позднее было подтверждено синтезом ацетона из цинк-диметила и хлористого ацетила.

Долгое время ацетон не имел широкого применения и произ­водился в небольших масштабах термическим разложением ук­суснокислого кальция («уксусного порошка»), получаемого при сухой перегонке древесины."

Вследствие зарождения и развития химии синтетических ма­териалов возникла потребность в таком хорошем растворителе, каким является ацетон; это заставило искать новые способы его получения.

В настоящее время ацетон широко применяется в качестве растворителя в различных отраслях промышленности. Он яв­ляется также сырьем для синтеза целого ряда соединений, в том числе растворителей более сложного строения, таких, как диа-цетоиовый спирт, окись мезитила, метилизобутилкетон, метил-изобутилкарбинол; из ацетона (через ацетонциангидрин) полу­чают метилметакрилат, применяемый в производстве органиче­ского стекла, изофорон, уксусный ангидрид, дяфенилолпропан и другие продукты.

Разнообразие областей применения ацетона вызвало быстрый рост его производства.

В Российской Федерации ацетон применяется главным образом как раство­ритель в производстве автомобильных, авиационных, кабельных, кожевенных и других лаков и эмалей, кинопленок, фотореаген­тов, целлулоида, ацетатного шелка и т. п. Для химических син­тезов используется лишь небольшая часть ацетона.

В данной работе приводится анализ различных способов получения ацетона, выбор оптимальной технологической схемы, обеспечивающей экономически эффективный, технологически целесообразный и экологически безопасный метод производства.


4. Синтез ХТС

 

Производство ацетона брожением крахмала

Ферментативный метод является самым старым методом по­лучения ацетона в промышленных масштабах. В результате жизнедеятельности некоторых видов бактерий (Bacyllus acetobutylicus и др.) крахмал превращается в ацетон и n-бутиловый спирт. В качестве сырья для этого процесса чаще всего приме­няют кукурузную муку; из 100 кг муки можно получить 12 кг n-бутанола, 6 кг ацетона и 2 кг этилового спирта [1].

 

Производство ацетона из изопропилового спирта

Изопропиловый спирт в довольно больших количествах вы­рабатывается в различных странах путем сернокислотной или прямой гидратации пропилена. Основным потребителем изопропилового спирта является производство ацетона, который может быть получен из него двумя методами: каталитическим дегидри­рованием и неполным окислением (в паровой или жидкой фазе).

Каталитическое дегидрирование изопропилового спирта. Ме­тод каталитического дегидрирования изопропилового спирта в ацетон осуществляется в промышленности США с 1923 г. и по­лучил широкое распространение в других странах. Принципиальная схема производства ацетона этим методом показана на рис. 1. Процесс протекает в одну стадию то реакции:

СН3СН(ОН)СН3  → СН3СОСН3 + Н2  – 69,9 кДж (16,7 ккал)

В качестве катализатора Используется главным образом окись цинка, осажденная на пемзе. Повышение температуры способствует сдвигу равновесия реакции в сторону образования ацетона. По данным Кольбе и Барвелла [1], степень превращения Изопропилового спирта в аце­тон при 225 °С составляет 84%, три 325 °С – 97%, при 525 °С – 100%, однако в последнем случае в значительной степени про­текают побочные реакции.

Рис. 1. Принципиальная схема производства ацетона дегидрирова­нием изопропилового спирта:

1 – испаритель; 2 – насосы; 3 – реактор; 4 – водяной холодильник смешения; 5 – холодильники; 6 – башня снасадкой; 7 – Водяной скрубберу; 9 – сборник ацетона

I – изопропиловый спирт; II – водород; III – пар; IV – вода; V – отходящие газы; VI – товарный ацетон.

Для предотвращения образования продуктов полимеризации, отравляющих катализатор, исходный изопропиловый спирт сме­шивают в паровой фазе с эквимолекулярным количеством водо­рода. Реакцию проводят яри 380°С, степень превращения изопропилового спирта составляет 98%. Реактор представляет со­бой заполненный катализатором трубчатый аппарат, межтруб­ное пространство которого обогревается топочными газами.

После 10 суток работы требуется регенерация катализатора, так как активность его уменьшается вследствие отложения угле­рода на поверхности. Регенерацию осуществляют пропусканием через слой катализатора азота, содержащего – 2% кислорода, при 500 °С, Срок службы катализатора – около 6 месяцев.

Контактные газы из реактора поступают на охлаждение (при котором конденсируется около 50% ацетона), после чего их промывают водой, поглощающей ацетон. Промывные воды под­вергаются фракционированию и азеотропной перегонке для вы­деления товарного ацетона и безводного изопропилового спирта, снова направляемого на дегидрирование.

Водород после промывки от ацетона возвращается на раз­бавление спирта, а водород, образовавшийся при дегидрирова­нии, выводится из системы и используется для других синтезов. Выход ацетона составляет около 90% (считая на изопропиловый спирт). На 1 т ацетона расходуется 1,1—1,2 т изопропилового спирта или около 0,9 т пропилена [1].

Французским институтом нефти разработан способ дегидри­рования изопропилового спирта в жидкой фазе. Катализатором процесса служит суспендированный в исходном спирте никель Ренея, реакцию проводят при 150 °С. В этих условиях достига­ются почти количественные выходы ацетона.

 

Неполное окисление изопропилового спирта в паровой фазе.

 

Реакция неполного окисления изопропилового спирта

СН3СН(ОН)СН3 + 0,5 О2 → СН3СОСН3 + Н3О + 180 кДж (43 ккал)

протекает в присутствии металлических катализаторов – меди, серебра, никеля, платины и т. д.

Высокий выход ацетона достигается при использовании се­ребра, осажденного на пемзе, или серебряной сетки. Темпера­тура реакции может изменяться в широких пределах (450— 650 °С) и выбирается в зависимости от применяемого катали­затора, объемной скорости паров спирта и воздуха и других факторов.

Перед подачей реагентов в контактный аппарат (рис. 2) изопропиловый спирт испаряют в испарителе-сатураторе, насыща­ют парами воздуха и перегревают полученную паровоздушную смесь. Реакция протекает в адиабатических условиях, т. е. теп­ло, выделяющееся в процессе окисления, воспринимается самой реакционной смесью.

При окислении, «роме ацетона, образуется также некоторое количество побочных продуктов, в том числе уксусной кислоты и ацетальдегида. Поэтому контактные газы после прохождения ими металлического катализатора пропускают через насадку в виде слоя мела, на которой уксусная кислота и ацетальдегид почти количественно превращаются в ацетон. Оптимальной для этой реакции является температура 450 °С, достигаемая охлаж­дением контактных газов во встроенном в реактор змеевике.

Из контактного аппарата газы поступают в котел-утилиза­тор, а затем последовательно на «парциальную» конденсацию и водную абсорбцию. Несконденсировавшиеся газы после аб­сорбции ацетона водой сбрасывают в атмосферу. Промывные воды из скруббера объединяют с конденсатом и направляют на ректификацию.

Рис. 2. Принципиальная схема производства ацетона неполным окислением изопропилового спирта в паровой фазе:

1 – висциновый фильтр; 2 – ротационный компрессор; 3, 9, 12, 19 – холодильники; 4 – ресивер; 5 – сборник изопропилового спирта; 6 – испаритель-сатуратор; 7 – контактный аппарат; 8 – котел-утилизатор; 9 – сборник конденсата; 10 – скруббер; 11 – насосы; 12 – сборник сточной воды; 15 – сепаратор; 16 – ректификационные колонны; 17 – дефлегматоры; 18 – кипятильники; 20 – сборник ацетона.

В первой по ходу процесса ректификационной колонне из водного раствора отгоняют ацетон и изопропиловый спирт. В верхнюю часть колонны для очистки от осмоляющихся при­месей подают 15%-ный раствор NaOH. Вода из куба колонны после осаждения органических веществ и утилизации ее тепла подается в скруббер на абсорбцию ацетона.

В следующей колонне происходит разделение продуктов на ацетон-сырец и раствор изопропилового спирта. Ацетон-сырец поступает на ректификацию для выделения товарного ацетона; изопропиловый спирт выделяют перегонкой из водного раство­ра и возвращают на окисление.

 

Неполное окисление изопропилового спирта в жидкой фазе.

Интересным методом получения ацетона из изопропилового спирта является его неполное окисление и жидкой фазе. Этот метод, применяемый для производства перекиси водорода, осу­ществляется с 1957 г. на заводе фирмы «Shell Chemical Со.» в США [2].

Процесс протекает по схеме

СН3СН(ОН)СН3 + О2 → СН3СОСН3 + Н2О2

и проводится автокаталитически при 90 – 140°С под давлением, позволяющем удерживать смесь в жидкой фазе. В качестве окис­лителя можно применять как воздух, так и кислород.

Реактор должен быть изготовлен из материалов, не разла­гающих перекись водорода. На окисление подают 89%-ный рас­твор изопропилового спирта; по достижении концентрации пе­рекиси водорода 15 – 25% продукт выводится из реактора, раз­бавляется водой и стабилизируется. Ацетон и не прореагировавший спирт отгоняют и очищают, перекись водорода концентри­руют быстрым испарением и вакуум-перегонкой.

Выход ацетона составляет 95% от теоретического, выход перекиси водорода – около 87 %25.


Другие методы получения ацетона

Ацетон получается также в качестве побочного продукта в синтезе аллилового спирта из изопропилового спирта и акро­леина:

СН3–СН(ОН) –СН3 + СН2=СН–СНО → СH2=СН–СН2ОН + СН3–СО–СН3

Эта реакция проводится в паровой фазе при 350–450 °С и атмосферном давлении в присутствии катализатора – смеси оки­си магния и окиси цинка.

Данный процесс, так же как и процесс получения ацетона и перекиси водорода из изопропилового спирта, является состав­ной частью синтеза глицерина по методу американской фирмы «Shell Chemical Со.»:

гидратация

 

окисление

 

а) пропилен → изопропиловый спирт → ацетон + перекись водорода

окисление

 


б) пропилен → акролеин

в) акролеин + изопропиловый спирт →  аллиловый спирт + ацетон

г) аллиловый спирт + перекись водорода → глицерин.

Значительные количества ацетона производят из этилового спирта, ацетилена и уксусной кислоты. Все три процесса по механизму, вероятно, сходны между собой.

Реакция

2Н5ОН + Н2О--- →  СН3СОСН3 + СО2 + 4Н2

протекает при взаимодействии паров этилового спирта и воды в присутствии катализатора — окиси железа, активированной известью; температура процесса 470 °С. Водной промывкой из контактных газов выделяют ацетон в виде 5%-ного водного раствора. Выход ацетона по этиловому спирту составляет 86% [2]. Катализатор нуждается в периодической регенерации, общий срок его службы — 6 месяцев. Реакцию

2СН=СН + ЗН2О → СН3СОСН3 + СО2 + 2Н2

проводят пропусканием ацетилена в смеси с избытком водяного пара над катализатором, состоящим из окисей цинка и железа. Процесс протекает при той же температуре (470 °С), что и син­тез ацетона из этилового спирта. Катализатор периодически ре­генерируют. При промывке контактных газов водой получают 10%-ный водный раствор ацетона, который подвергают ректи­фикации. Выход ацетона равен 85% от теоретического. Эта реакция успешно осуществлялась даже при применении газа, содержащего 8% ацетилена («разбавленный» ацетилен).

В обоих описанных процессах ацетон получается, по-видимому, в результате декарбоксилирования промежуточно образую­щейся уксусной кислоты, способность которой превращаться в (СН3)2СО при нагревании с солями металлов (например, с аце­татом кальция) известна уже давно.

Это обстоятельство использовано для оформления в промыш­ленном масштабе процесса производства ацетона пропусканием паров уксусной кислоты над окисью церия (осажденной на пемзе) при 400—450 0С и атмосферном давлении:

2СН3СООН → СН3СОСН3 + СО2 + Н2О

Выход ацетона достигает 95% от теоретического.

Одним из путей получения ацетона в промышленности яв­ляется каталитическое окисление пропан-бутановых смесей при низкой температуре и высоком давлении, осуществленное в США фирмами «Gelanese Corporation of America» и «Warren Petroleum Co.».

Наряду с ацетоном в этом процессе образуются также ук­сусная кислота (главный продукт), метилэтилкетон, ацетальдегид, метанол, муравьиная, пропионовая и масляная кислоты и различные лактоны.

Недавно была показана возможность синтеза ацетона пря­мым окислением пропилена в присутствии хлористого палладия. Сообщают, что пропилен легко превращается в ацетон в тече­ние 5 мин при 20 °С; выход ацетона составляет 90% от теоре­тического.

Процесс окисления пропилена, выражаемый суммарным уравнением

СН3СН=СН2 + 0.5 О2 → СН3СОСН3

протекает в две стадии:

а) СН3СН=СН2 + РbС12 + Н2О →  СН3СОСН3 + Рb + 2НС1

б) Рb + 2НС1 + 0.5 О2 →  Рb С12 + Н2О

На практике процесс осуществляется значительно сложнее. Реакционной средой является водный раствор солей палладия, железа и меди. В этот раствор пропускают олефин. Хлористый палладий дает с олефином комплекс, который легко разру­шается с образованием карбонильного соединения, металличе­ского палладия и соляной кислоты. Металлический палладий немедленно окисляется в хлорид солями железа и меди, кото­рые при этом переходят в соли низшей валентности. Окисление солей меди и железа в соли с высшей валентностью осущест­вляется кислородом (или кислород-азотной смесью). Таким об­разом, указанные соли являются переносчиками кислорода.

Процесс может быть оформлен в одну стадию, если в реак­тор, содержащий раствор солей, одновременно поступают оле­фин и кислород, или в две стадии, когда олефин и кислород подаются в два отдельных реактора, между которыми цирку­лирует раствор солей.

Такой способ окисления олефинов в настоящее время раз­работан применительно к процессу получения ацетальдегида из этилена.

Наконец, как уже указывалось, ацетон полу­чается в качестве побочного продукта в синтезе фенола по кумольному методу. Этот метод значительно сложнее технологически, но при реализации достаточно больших объёмов производства позволяет намного снизить себестоимость продукта.

 


Информация о работе «Синтез и анализ ХТС в производстве ацетона»
Раздел: Химия
Количество знаков с пробелами: 56023
Количество таблиц: 2
Количество изображений: 14

Похожие работы

Скачать
72324
0
0

... , необходимо отметить, что во многих случаях следует комплексно использовать их, дополняя совершенствованием организации и управления производством, расширением и углублением научных исследований в области химической технологии, а также улучшением проектной деятельности соответствующих организаций. Новым мощным средством повышения эффективности ряда производств следует считать внедрение атомной ...

Скачать
23121
0
0

... сопряжения с системами иных функциональных назначений, смежных с используемой (если таковые имеются) [3]. ОБЗОР ИСПОЛЬЗУЕМЫХ И ПРОЕКТИРУЕМЫХ СИСТЕМ Наибольшее распространение системы химического мониторинга получили в химической технологии при моделировании технологических процессов. Так, производства нитроглицерина, тротила, аммиачной селитры, фосфатов и других крупнотоннажных продуктов ...

Скачать
209804
3
8

... приводят к гибели наркоманов? Какие факторы способствуют высокой смертности? Причины: травмы - в дорожных происшествиях, по неосторожности, в "разборках"; передозировки; отравления некачественными наркотиками; заболевания - сепсис, пневмония, хроническая печеночная недостаточность. Факторы, способствующие высокой смертности: высокая вовлеченность в криминальные отношения, невнимательность и ...

Скачать
90490
0
0

... наркотической зависимости. Возвращение к людям, к обществу - это совместный труд врачей, семьи, педагогов. Полный курс лечения от наркомании и токсикомании состоит из четырех этапов. Первый этап - нейтрализация ядов в организме человека. С помощью специальных растворов и медикаментов осуществляется выведение и избавление организма от наркотических веществ. Процесс выведения наркотиков особенно ...

0 комментариев


Наверх