4 Функция Эйлера

 

Определение. Функция : R R (или, более общо, : C C ) называется мультипликативной если:

1). Функция определена всюду на N и существует а N такой, что ( а ) 0.

2). Для любых взаимно простых натуральных чисел а 1 и а 2 выполняется ( а 1 · а 2 ) = ( а 1 ) · ( а 2 ).

Пример 1. ( а ) = а s , где s - любое (хоть действительное, хоть комплексное) число. Проверка аксиом 1) и 2) из определения мультипликативной функции не составляет труда, а сам пример показывает, что мультипликативных функций по меньшей мере континуум, т.е. много.

Перечислим, кое-где доказывая, некоторые свойства мультипликативных функций. Пусть всюду ниже ( а ) - произвольная мультипликативная функция.

Свойство 1. (1) = 1.

Доказательство. Пусть а - то самое натуральное число, для которого

( а ) 0. Тогда ( а · 1) = ( а ) · (1) = ( а ).

 

Свойство 2.

,

где р 1 , р 2 ,..., р n - различные простые числа.

Доказательство очевидно.

Свойство 3. Обратно, мы всегда построим некоторую мультипликативную функцию ( a ), если зададим (1) = 1 и произвольно определим ( р ) для всех простых р и всех натуральных , а для остальных натуральных чисел доопределим функцию ( a ) используя равенство


.

 

Доказательство сразу следует из основной теоремы арифметики.

Пример 2. Пусть (1) = 1 и ( р ) = 2 для всех р и . Тогда, для произвольного числа,

.

 

Свойство 4. Произведение нескольких мультипликативных функций является мультипликативной функцией.

Доказательство. Сначала докажем для двух сомножителей: Пусть 1 и 2 - мультипликативные функции = 1 · 2 , тогда (проверяем аксиомы определения)

1) (1) = 1 (1) · 2 (1) = 1 и, кроме того, существует такое a (это a = 1), что ( a ) 0.

2) Пусть ( a , b ) = 1 - взаимно просты. Тогда

( a · b ) = 1 ( a · b ) · 2 ( a · b ) =

= 1 ( a ) 1 ( b ) 2 ( a ) 2 ( b ) =

= 1 ( a ) 2 ( a ) · 1 ( b ) 2 ( b ) = ( a ) ( b ).

Доказательство для большего числа сомножителей проводится стандартным индуктивным рассуждением.

Введем удобное обозначение. Всюду далее, символом

будем обозначать сумму чего-либо, в которой суммирование проведено по всем делителям d числа n . Следующие менее очевидные, чем предыдущие, свойства мультипликативных функций я сформулирую в виде лемм, ввиду их важности и удобства дальнейших ссылок.

Лемма 1. Пусть

- каноническое разложение числа a N , - любая мультипликативная функция. Тогда:

Если a = 1, то считаем правую часть равной 1.

Доказательство. Раскроем скобки в правой части. Получим сумму всех (без пропусков и повторений) слагаемых вида

,

где 0 k k , для всех k n . Так как различные простые числа заведомо взаимно просты, то

,

а это как раз то, что стоит в доказываемом равенстве слева.

Лемма 2. Пусть ( a ) - любая мультипликативная функция. Тогда

,

- также мультипликативная функция.

Доказательство. Проверим для ( a ) аксиомы определения мультипликативной функции.

1).

2). Пусть

и все р и q различны. Тогда, по предыдущей лемме, имеем: (благо, делители у чисел a и b различны)

Пример 1. Число делителей данного числа.

Пусть ( а ) = а 0 1 - тождественная единица (заведомо мультипликативная функция). Тогда, если

,

то тождество леммы 1 пункта 13 принимает вид:

,


- это не что иное, как количество делителей числа a . По лемме 2 пункта 13, количество делителей ( a ) числа a есть мультипликативная функция.

Пример 2. Сумма делителей данного числа.

Пусть ( a ) = a 1 a - тождественная мультипликативная функция. Тогда, если

,

то тождество леммы 1 пункта 13 принимает вид:

сумма первых ( + 1) членов

геометрической прогрессии

- сумма всех делителей числа a . По лемме 2 пункта 13, сумма всех делителей есть мультипликативная функция.

Пример 3. Функция Мебиуса.

Функция Мебиуса ( a ) - это мультипликативная функция, определяемая следующим образом: если p - простое число, то ( p ) = -1; ( p ) = 0, при > 1; на остальных натуральных числах функция доопределяется по мультипликативности.

Таким образом, если число a делится на квадрат натурального числа, отличный от единицы, то ( a ) = 0; если же a = p 1 p 2· · · p n (теоретик-числовик сказал бы на своем жаргоне: "если a свободно от квадратов"), то ( a ) = (-1) k , где k - число различных простых делителей a . Понятно, что (1) = (-1) 0 = 1, как и должно быть.

Лемма 1. Пусть ( a ) - произвольная мультипликативная функция,

.

Тогда:

(при a = 1 считаем правую часть равной 1).

Доказательство. Рассмотрим функцию 1 ( x ) = ( x ) · ( x ). Эта функция мультипликативна, как произведение мультипликативных функций. Для 1 ( x ) имеем ( p - простое): 1 ( p ) = - ( x ); 1 ( p ) = 0, при > 1. Следовательно, для 1 ( x ) тождество леммы 1 пункта 13 выглядит так:

 

Следствие 1. Пусть ( d ) = d -1 = 1/ d (это, конечно, мультипликативная функция),


Тогда:

 

Пример 4. Функция Эйлера.

Функция Эйлера, пожалуй, самая знаменитая и "дары приносящая" функция из всех функций, рассматриваемых в этом пункте. Функция Эйлера ( a ) есть количество чисел из ряда 0, 1, 2,..., a - 1, взаимно простых с a . Полезность и практическое применение этой функции я продемонстрирую в следующих пунктах, а сейчас давайте поймем, как ее вычислять.

Лемма 2. Пусть

.

Тогда:

1) (формула Эйлера);

2)

в частности, ( p ) = p - p -1 , ( p ) = p - 1.

Доказательство. Пусть x пробегает числа 0, 1, 2,..., a - 1. Положим x = ( x , a ) - наибольший общий делитель. Тогда ( a ) есть число значений x , равных 1. Придумаем такую функцию ( x ), чтобы она была единицей, когда x единица, и была нулем в остальных случаях. Вот подходящая кандидатура:


Последнее легко понять, если вспомнить лемму 1 из этого пункта и в ее формулировке взять ( d ) 1. Далее, сделав над собой некоторое усилие, можно усмотреть, что:

Поскольку справа сумма в скобках берется по всем делителям d числа x = ( x , a ), то d делит x и d делит a . Значит в первой сумме справа в суммировании участвуют только те x , которые кратны d . Таких x среди чисел 0, 1, 2,..., a - 1 ровно a / d штук. Получается, что:

что и требовалось.

Пояснение для читателей, у которых предыдущие соображения не захотели укладываться в голову, например, из-за плохих погодных условий. Имеем

Зафиксируем некоторое d 0 такое, что d 0 делит a , d 0 делит x , x < a . Значит в сумме справа в скобках слагаемых ( d 0 ) ровно a / d 0 штук и ( a ) есть просто сумма


После этого, равенство

получается применением следствия из леммы 1 этого пункта. Должен признать, что приведенное доказательство формулы Эйлера и, в особенности, его последний момент с изменением порядка суммирования, объективно тяжеловаты для понимания. Но мы не боимся трудностей!

Второе утверждение леммы следует из первого внесением впереди стоящего множителя a внутрь скобок.

Оказывается, только что доказанная формула

для вычисления функции Эйлера имеет ясный "физический смысл". Дело в том, что в ней отражено так называемое правило включений и исключений:

Правило включений и исключений. Пусть задано множество А и выделено k его подмножеств. Количество элементов множества А , которые не входят ни в одно из выделенный подмножеств, подсчитывается так: надо из общего числа элементов А вычесть количества элементов всех k подмножеств, прибавить количества элементов всех их попарных пересечений, вычесть количества элементов всех тройных пересечений, прибавить количества элементов всех пересечений по четыре и т.д. вплоть до пересечения всех k подмножеств.

Проиллюстрирую это правило на примере подсчета функции Эйлера для чисел вида

Посмотрите на рисунок 1.

Рис. 1.

Прямоугольник изображает множество всех целых чисел от 0 до a ; овал N 1 - множество чисел, кратных p 1 ; кружок N 2 - числа, кратные p 2 ; пересечение N 1,2 - множество чисел, делящихся одновременно на p 1 и p 2 , т.е. на p 1 p 2 ; числа вне овала и кружочка взаимно просты с a . Для подсчета числа чисел, взаимно простых с a , нужно из a вычесть количество чисел в N 1 и количество чисел в N 2 (их, соответственно, a / p 1 и a / p 2 штук), при этом общая часть N 1,2 (там a /( p 1 p 2 ) штук чисел) вычтется дважды, значит ее надо один раз прибавить (вот оно, "включение - исключение"!). В результате получим:

что я вам и утверждал. Мне кажется, что таким способом можно объяснить формулу Эйлера любому смышленому школьнику.

Кстати, любому смышленому школьнику вполне возможно объяснить и то, что при a > 2, ( a ) всегда число четное. Действительно, если k взаимно просто с a и k < a , то число a - k тоже меньше a , взаимно просто с a и не равно k . (Если бы a и a - k имели общий делитель, то их разность a - ( a - k ) = k тоже делилась бы на этот делитель, что противоречит взаимной простоте a и k .) Значит числа, взаимно простые с a разбиваются на пары k и a - k , следовательно, их четное число.

Из леммы 2 вытекают приятные следствия.

Следствие 2. Функция Эйлера мультипликативна.

Доказательство. Имеем:

- произведение двух мультипликативных функций, первая из которых мультипликативна по лемме 2 пункта 13. Значит, ( a ) - мультипликативна.

 

Следствие 3. .

Доказательство. Пусть

.

Тогда, по лемме 1 пункта 13 имеем:


.


5 Китайская теорема об остатках

В этом пункте детально рассмотрим только сравнения первой степени вида

ax b(mod m),

оставив более высокие степени на съедение следующим пунктам. Как решать такое сравнение? Рассмотрим два случая.

Случай 1. Пусть а и m взаимно просты. Тогда несократимая дробь m/a сама просится разложиться в цепную дробь:

Эта цепная дробь, разумеется, конечна, так как m/a - рациональное число. Рассмотрим две ее последние подходящие дроби:

.

Вспоминаем (пункт 9) важное свойство числителей и знаменателей подходящих дробей: mQ n-1 -aP n-1 =(-1) n . Далее (слагаемое mQ n-1 , кратное m , можно выкинуть из левой части сравнения):

-aP n-1 (-1) n (mod m) т.е.

aP n-1 (-1) n-1 (mod m) т.е.

a[(-1) n-1 P n-1 b] b(mod m)

и единственное решение исходного сравнения есть:

x (-1) n-1 P n-1 b(mod m)

 

Пример. Решить сравнение 111x 75(mod 322).

Решение. (111, 322)=1. Включаем алгоритм Евклида:

322=11 · 2+100

111=100 · 1+11

100=11 · 9+1

11=1 · 11

(В равенствах подчеркнуты неполные частные.) Значит, n=4 , а соответствующая цепная дробь такова:

Посчитаем числители подходящих дробей, составив для этого стандартную таблицу:

  0 2 1 9 11
P n 1 2 3 29 322

Числитель предпоследней подходящей дроби равен 29, следовательно, готовая формула дает ответ: x (-1) 3 29 75 -2175 79(mod 322)

Ох уж эти мне теоретико-числовые рассуждения из разных учебников, продиктованные традицией изложения и необходимостью обязательно использовать ранее изложенную теорию! О чем идет речь в нескольких строках выше? Дано сравнение ax b(mod m) , где a и m взаимно просты. Ну возьмите вы алгоритм Евклида, найдите те самые пресловутые u , v Z такие, что au+vm=1 , умножьте это равенство на b : aub+vmb=b , откуда немедленно следует: aub b(mod m) . Значит решением исходного сравнения является x ub(mod m) . Собственно, и все. Поворчал.

Случай 2. Пусть (a,m)=d . В этом случае, для разрешимости сравнения ax b(mod m) необходимо, чтобы d делило b , иначе сравнение вообще выполняться не может. Действительно, ax b(mod m) бывает тогда, и только тогда, когда ax- b делится на m нацело, т.е. ax- b=t · m ,

t Z , откуда b=ax- t m , а правая часть последнего равенства кратна d .

Пусть b=db 1 , a=da 1 , m=dm 1 . Тогда обе части сравнения xa 1 d b 1 d(mod m 1 d) и его модуль поделим на d :

xa 1 b 1 (mod m 1 ) ,

где уже а 1 и m 1 взаимно просты. Согласно случаю 1 этого пункта, такое сравнение имеет единственное решение x 0 :

x x 0 (mod m 1 ) (*)

По исходному модулю m , числа (*) образуют столько решений исходного сравнения, сколько чисел вида (*) содержится в полной системе вычетов: 0,1,2,..., m-2, m-1 . Очевидно, что из чисел x=x 0 +t m в полную систему наименьших неотрицательных вычетов попадают только x 0 , x 0 +m 1 , x 0 +2m 1 , ..., x 0 +(d-1)m 1 , т.е. всего d чисел. Значит у исходного сравнения имеется d решений.

Подведем итог рассмотренных случаев в виде следующей теоремы

Теорема 1. Пусть (a,m)=d . Если b не делится на d , сравнение ax b(mod m) не имеет решений. Если b кратно d , сравнение ax b(mod m) имеет d штук решений.

Пример. Решить сравнение 111x 75(mod 321) .

Решение. (111,321)=3 , поэтому поделим сравнение и его модуль на 3:

37x 25(mod 107) и уже (37,107)=1 .

Включаем алгоритм Евклида (как обычно, подчеркнуты неполные частные):

107=37 2+33

37=33 1+4

33=4 8+1

4=1 4

Имеем n=4 и цепная дробь такова:

Таблица для нахождения числителей подходящих дробей:

q n 0 2 1 8 4
P n 1 2 3 26 107

Значит, x (-1) 3 26 25 -650(mod 107) -8(mod 107) 99(mod 107) .

Три решения исходного сравнения:

x 99(mod 321), x 206(mod 321), x 313(mod 321) ,

и других решений нет.

Теорема 2. Пусть m>1, (a,m)=1 Тогда сравнение ax b(mod m) имеет решение: x ba (m)-1 (mod m) .

Доказательство. По теореме Эйлера, имеем: a (m) 1(mod m) , следовательно, a ba (m)-1 b(mod m) .

Пример. Решить сравнение 7x 3(mod 10) . Вычисляем:

(10)=4; x 3 7 4-1 (mod 10) 1029(mod 10) 9(mod 10) .

Видно, что этот способ решения сравнений хорош (в смысле минимума интеллектуальных затрат на его осуществление), но может потребовать возведения числа а в довольно большую степень, что довольно трудоемко. Для того, чтобы как следует это прочувствовать, возведите самостоятельно число 24789 в степень 46728.

Теорема 3. Пусть р – простое число, 0<a<p . Тогда сравнение ax b(mod p) имеет решение:

где C a p – биномиальный коэффициент.

Доказательство непосредственно следует из очевидного сравнения

которое нужно почленно поделить на взаимно простое с модулем число 1 2 3 ... a-1 .

Пример. Решить сравнение 7x 2(mod 11) . Вычисляем:


На этом пункт 19 можно было бы и закончить, но невозможно, говоря о решении сравнений первой степени, обойти стороной вопрос о решении систем сравнений первой степени. Дело в том, что умение решать простейшие системы сравнений не только является неотъемлемой частью общечеловеческой культуры, позволяющей гражданину не падать в ямы, расщелины и открытые люки. Такое умение, кроме всего прочего, пригодится нам при изучении сравнений произвольной степени, о которых пойдет речь в следующих пунктах.

Лемма 1 (Китайская теорема об остатках). Пусть дана простейшая система сравнений первой степени:

где m 1 ,m 2 ,...,m k попарно взаимно просты. Пусть, далее, m 1 m 2 ...m k =M s m s ; M s M s 1(mod m s ) (Очевидно, что такое число M s всегда можно подобрать хотя бы с помощью алгоритма Евклида, т.к. (m s ,M s )=1 ); x 0 =M 1 M 1 b 1 +M 2 M 2 b 2 +...+M k M k b k . Тогда система (*) равносильна одному сравнению

x x 0 (mod m 1 m 2 ...m k ) ,

т.е. набор решений (*) совпадает с набором решений сравнения x x 0 (mod m 1 m 2 ...m k ) .

Доказательство. Имеем: m s делит M j , при s j. Следовательно, x 0 M s M s b s (mod m s ) , откуда x 0 b s (mod m s ) . Это означает, что система (*) равносильна системе

которая, очевидно, в свою очередь, равносильна одному сравнению x x 0 (mod m 1 m 2 ...m k ) .

В следующей лемме, для краткости формулировки, сохранены обозначения леммы 1.

Лемма 2. Если b 1 ,b 2 ,...,b k пробегают полные системы вычетов по модулям m 1 ,m 2 ,...,m k соответственно, то x 0 пробегает полную систему вычетов по модулю m 1 m 2 ...m k .

Доказательство. Действительно, x 0 =A 1 b 1 +A 2 b 2 +...+A k b k пробегает m 1 m 2 ...m k различных значений. Покажем, что все они попарно не сравнимы по модулю m 1 m 2 ...m k .

Ну пусть оказалось, что

A 1 b 1 +A 2 b 2 +...+A k b k A 1 b' 1 +A 2 b' 2 +...+A k b' k (mod m 1 m 2 ...m k )

 

Значит,

A 1 b 1 +A 2 b 2 +...+A k b k A 1 b' 1 +A 2 b' 2 +...+A k b' k (mod m s )

для каждого s , откуда


M s M s b s M s M s b' s

Вспомним теперь, что M s M s 1(mod m s ) , значит M s M s 1+m s t , откуда (M s M s ,m s )=1 . Разделив теперь обе части сравнения

M s M s b s M s M s b' s

на число M s M s , взаимно простое с модулем, получим, что b s b' s (mod m s ) , т.е. b s =b' s для каждого s .

Итак, x 0 пробегает m 1 m 2 ...m k различных значений, попарно не сравнимых по модулю m 1 m 2 ...m k , т.е. полную систему вычетов.

Формулировка для колец

Пусть A, (B_i)_{i \in I}- коммутативные ассоциативные кольца с единицей, \phi_i: A \to B_iсюрьективные гомоморфизмы, обладающие свойством Ker\,\phi_i + Ker\,\phi_j=Aдля всех i,j \in I. Тогда гомоморфизм \Phi: A \to \prod_{i \in I} B_i, заданный формулой

\Phi(a) = (\phi_i(a))_{i \in I}

является сюрьективным. Более того, Φ опеределяет изоморфизм

A / (\cap_{i \in I} Ker\,\phi_i )\simeq \prod_{i \in I} B_i.

Если положить A=\mathbb{Z}/(a_1\cdot \ldots \cdot a_n)\mathbb{Z}, B_i = \mathbb{Z}/a_i\mathbb{Z}и определить гомоморфизмы следующим образом

\phi_i(x) = x \mod a_i


то мы получим арифметическую версию теоремы.

Также часто встречается следующая эквивалентная формулировка для колец, где Bi имеют форму A / Ii, φi являются естественными проекциями на A / Ii и требуется, чтобы Ii + Ij = A для любых i, j \in I.


Заключение

История арифметики остатков начинается с исследований К.Ф. Гаусса, который впервые стал рассматривать сравнения. В дальнейшем была обнаружена связь теории сравнений с астрономическими задачами (китайская теорема об остатках). В результате многочисленных исследований теория остатков была распространена на кольца произвольной природы. В последнее время обнаружилось приложение этой теории в криптографии. В дипломной работе изложена теория остатков на современном алгебраическом языке.


Список использованных источников

1.  С. Ленг, Алгебра, М., 1968

2.  С. Коунтинхо, Введение в теорию чисел. Алгоритм RSA, М. 2001

3.  А.И. Кострикин, Введение в алгебру, М., 2000

4.  О. Зарисский, Коммутативная алгебра, т.1., М., 1963


Информация о работе «Теория остатков»
Раздел: Математика
Количество знаков с пробелами: 72202
Количество таблиц: 18
Количество изображений: 8

Похожие работы

Скачать
234884
16
1

... серьезных доказательств самозарождения жизни (даже в виде самой маленькой живой клеточки, способной создать себе подобные), а то, что они предъявляют – не более чем теории (гипотезы). Что ж, их труды идут на пользу теории научного креационизма! А теперь предоставлю информацию по иным противоречиям в биологии (и в других науках), с которыми сталкивается теория эволюции. ХОТЯ ЭТА ИНФОРМАЦИЯ НЕ ...

Скачать
229704
44
52

... , работавших в области электротехники, заинтересовалась возможностью создания технологии хранения данных, обеспечивающей более экономное расходование пространства. Одним из них был Клод Элвуд Шеннон, основоположник современной теории информации. Из разработок того времени позже практическое применение нашли алгоритмы сжатия Хаффмана и Шеннона-Фано. А в 1977 г. математики Якоб Зив и Абрахам Лемпел ...

Скачать
112215
16
5

... функционально-пространственного развития города, сформулирован методически обоснованный подход и предложена 10 перспективная модель кадастровой оценки земель в городском секторе экономики, способствующая развитию предпринимательства в сфере управления земельными отношениями. Результаты, выносимые на защиту. В ходе проведенных исследований получены и выносятся на защиту следующие результаты: ...

Скачать
324276
3
8

... английский, мож­но ли сказать, что проблема евроцентризма ушла в прошлое? Очевидно, многое еще остается выяснить в наших подходах к ми­ровой истории. РАЗДЕЛ 2. ТЕОРИЯ ЯДРА   Глава 1 Центр и периферия цивилизации § 1. А. Тойнби О ТЕРРИТОРИАЛЬНОМ РАСПРОСТРАНЕНИИ КАК КРИТЕРИИ РАЗВИТИЯ ЦИВИЛИЗАЦИИ Рост цивилизации по своей природе является восходящим движением. Цивилизации развиваются ...

0 комментариев


Наверх