Теория случайных функций

2527
знаков
4
таблицы
1
изображение

Московский Государственный Институт Электроники и Математики

(Технический Университет)


КОНТРОЛЬНАЯ РАБОТА

по теме “Теория случайных функций“

Студент: Айдаров Д.А.

Вариант: 2.4.5.б

Преподаватель: Попка А.И.

Шымкент 2009


Дано: Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУравна b.

Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром a.

Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром m.

Тип резервирования - ненагруженный.

Для описания состояния системы введем двумерный случайный процесс n(t) = (x(t), d(t)) с координатами, описывающими:

- функционирование элементов

x(t) Î {0, 1, 2} - число неисправных элементов;

- функционирование КПУ

d(t) Î {0,1} - 1 - 1, если исправен, 0 - если нет.

Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.

Определим состояние отказа системы:

Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса x(t) (т.е. отказ какого-либо элемента и отказ КПУ).

Таким образом, можно построить граф состояний системы:

0

1

П

 

0 - состояние, при котором 0 неисправных элементов, т.е. состояние n(t) = (0, d(t))

1 - состояние, при котором 1 неисправный элемент, т.е. состояние n(t) = (1, 1)

П - состояние, при котором либо 2 неисправных  элемента, либо 1 неисправный элемент и неисправный КПУ, т.е. композиция состояний  n(t) = (1, 1), n(t) =(2, 0) - поглощающее состояние.

Найдем интенсивности переходов.

Так как выход из строя каждого из элементов - события независимые, то получим:

вероятность выхода из строя элемента: 1-exp(-5ah) = 5ah + o(h)

вероятность восстановления элемента: 1-exp(-mh) = mh + o(h)

Þ

Пусть

Получим систему дифференциальных уравнений Колмогорова:


Пусть ,

т.е. применим преобразование Лапласа к .

Т.к. , то, подставляя значения интенсивностей, получаем:

Þ

Þ

(- корни =0)

Представляя каждую из полученных функций в виде суммы двух правильных дробей, получаем:


Применяя обратное преобразование Лапласа, получаем выражения для функций

Þ

Искомая вероятность невыхода системы из строя за время t:

,

Где

,

Итак,

,

Где

Определим теперь среднее время жизни такой системы, т.е. MT (T - время жизни системы):


Þ


Информация о работе «Теория случайных функций»
Раздел: Математика
Количество знаков с пробелами: 2527
Количество таблиц: 4
Количество изображений: 1

Похожие работы

Скачать
66594
1
0

... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...

Скачать
96339
12
7

... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
30959
0
0

... ≠ j) X(t) = mx(t) + ∑ Viφi(t) (t ? T) Следует: K(t, t’) = ∑ Diφi(t)φi(t’) Эту формулу называют каноническим разложением корреляционной функции случайного процесса. В случае уравнения X(t) = mx(t) + ∑ Viφi(t) (t ? T) Имеют место формулы: X(t) = mx(t) + ∑ Viφ(t) ∫ x(τ)dt = ∫ mx(τ)dτ + ∑ Vi ...

0 комментариев


Наверх