Московский Государственный Институт Электроники и Математики
(Технический Университет)
КОНТРОЛЬНАЯ РАБОТА
по теме “Теория случайных функций“
Студент: Айдаров Д.А.
Вариант: 2.4.5.б
Преподаватель: Попка А.И.
Шымкент 2009
Дано: Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУравна b.
Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром a.
Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром m.
Тип резервирования - ненагруженный.
Для описания состояния системы введем двумерный случайный процесс n(t) = (x(t), d(t)) с координатами, описывающими:
- функционирование элементов
x(t) Î {0, 1, 2} - число неисправных элементов;
- функционирование КПУ
d(t) Î {0,1} - 1 - 1, если исправен, 0 - если нет.
Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.
Определим состояние отказа системы:
Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса x(t) (т.е. отказ какого-либо элемента и отказ КПУ).
Таким образом, можно построить граф состояний системы:
|
|
0 1 |
П |
|
|
|
0 - состояние, при котором 0 неисправных элементов, т.е. состояние n(t) = (0, d(t))
1 - состояние, при котором 1 неисправный элемент, т.е. состояние n(t) = (1, 1)
П - состояние, при котором либо 2 неисправных элемента, либо 1 неисправный элемент и неисправный КПУ, т.е. композиция состояний n(t) = (1, 1), n(t) =(2, 0) - поглощающее состояние.
Найдем интенсивности переходов.
Так как выход из строя каждого из элементов - события независимые, то получим:
вероятность выхода из строя элемента: 1-exp(-5ah) = 5ah + o(h)
вероятность восстановления элемента: 1-exp(-mh) = mh + o(h)
Þ
Пусть
Получим систему дифференциальных уравнений Колмогорова:
Пусть ,
т.е. применим преобразование Лапласа к .
Т.к. , то, подставляя значения интенсивностей, получаем:
Þ
Þ
(- корни =0)
Представляя каждую из полученных функций в виде суммы двух правильных дробей, получаем:
Применяя обратное преобразование Лапласа, получаем выражения для функций :Þ
Þ
Искомая вероятность невыхода системы из строя за время t:
,
Где
,
Итак,
,
Где
Определим теперь среднее время жизни такой системы, т.е. MT (T - время жизни системы):
Þ
Похожие работы
... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...
... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...
... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2. ...
... ≠ j) X(t) = mx(t) + ∑ Viφi(t) (t ? T) Следует: K(t, t’) = ∑ Diφi(t)φi(t’) Эту формулу называют каноническим разложением корреляционной функции случайного процесса. В случае уравнения X(t) = mx(t) + ∑ Viφi(t) (t ? T) Имеют место формулы: X(t) = mx(t) + ∑ Viφ(t) ∫ x(τ)dt = ∫ mx(τ)dτ + ∑ Vi ...
0 комментариев