4. Разложение некоторых элементарных функций в ряд Маклорена

1. . Для этой функции ,  .

По формуле (3.2) составим ряд Маклорена данной функции:

. (3.3)

Найдем радиус сходимости ряда (3.3) по формуле (1.3):

.

Следовательно, ряд (3.3) сходится при любом значении .

Все производные функции  на любом отрезке  ограничены, т. е.

 

 .

Поэтому, согласно теореме 3.1, имеет место разложение

. (3.4)

2. . Для этой функции , ,  .

Отсюда следует, что при  производные четного порядка равны нулю, а производные нечетного порядка чередуют знак с плюса на минус.

По формуле (3.2) составим ряд Маклорена:

 .

При любом фиксированном значении этот ряд сходится как знакочередующийся по признаку Лейбница. При этом

 

 .

Поэтому, согласно теореме 3.1, имеет место разложение

. (3.5)

3. . Воспользуемся разложением (3.5) в ряд Маклорена функции  и свойством 2 о дифференцировании степенного ряда. Имеем

 .

(3.6)

Поскольку при почленном дифференцировании интервал сходимости степенного ряда не изменяется, то разложение (3.6) имеет место при любом .

Приведем без доказательства разложения других элементарных функций в ряды Маклорена.

4.

 – биномиальный ряд ( – любое действительное число).

Если  – положительное целое число, то получаем бином Ньютона:

.

 – логарифмический ряд.

.

 

5. Приложения степенных рядов

Степенные ряды находят применение в таких задачах, как приближенное вычисление функций с заданной степенью точности, определенных интегралов, решение дифференциальных уравнений и др.

Приближенное значение функции вычисляют, заменяя ряд Маклорена этой функции конечным числом его членов.

Приведем приближенные формулы для вычисления некоторых наиболее часто встречающихся функций при достаточно малых значениях х:

; ; ; ;

; .


Литература

1. Высшая математика: Общий курс: Учебник – 2-е изд., перераб. / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. – Мн.: Выш. шк., 2000.– 351 с.

2. Марков Л.Н., Размыслович Г.П. Высшая математика. Ч. 2. Основы математического анализа и элементы дифференциальных уравнений. – Мн.: Амалфея, 2003. – 352 с.


Информация о работе «Степенные ряды»
Раздел: Математика
Количество знаков с пробелами: 7959
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
7707
0
43

... процессов. М.: Наука, 1969, Гл.1. §5. Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1969, Гл.1. §3. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974, Гл.2. §16. Арнольд В. И. Обыкновенные дифференциальные уравнения. М.: Наука, 1975, ГЛ.2. §12. С.73-78, 84-85. program coefficients; type mas=array[1..100] of real;beg=array[1..6] of real; var ...

Скачать
11391
0
4

... р2; В первом случае l -комплексные; Ѕ l 2 Ѕ =q; (20) если q<1; устойчивость q>1 - неустойчивость. Случай второй - l - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12). (22) Если принять во внимание (15) (22a)(23) Мы видим, что при достаточно малом m и w № n; n ' Z вопрос об устойчивости решается величиной q и ...

Скачать
33388
0
0

... , то отрицательны. Т.Лейбница: Если члены знакочередующегося ряда убывают по абсолютной величине U1>U2>U3… и предел его общего члена при n®¥ равен 0 (Lim n®¥ Un=0), то ряд сходится, а его сумма не превосходит первого члена: U1³S. Д: Рассмотрим последовательность частичных сумм четного числа членов при n=2m: S2m=(U1-U2)+(U3-U4)+…+(U2m-1-U2m). Эта последовательность ...

Скачать
23933
0
6

... до бесконечности вместе с n. 1.2 Истоки проблемы Различные факты из области математического анализа, как, например, расходимость, произведения двух сходящихся рядов, естественно выдвинули вышеупомянутый вопрос: “О возможности суммирования расходящихся рядов, в некоем новом смысле”. Нужно сказать, что до создания Коши строгой теории пределов (и связанной с нею теории рядов) расходящиеся ...

0 комментариев


Наверх