Контрольная работа

«Элементы алгебры и геометрии»

Вариант 9


Задание № 19

Решить систему трех уравнений с тремя неизвестными при помощи определителей.

 

Найдем определитель матрицы А:

Δ(А) =  =

= 2 ∙ 1 ∙6 + (-3) (-2) ∙3 + 1 ∙ 1 ∙ (-2) – 1 ∙ 1 ∙ 3 – (-3) ∙ 1 ∙ 6 – 2 (-2) ∙ (-2) =

= 12 + 18 – 2 – 3 + 18 – 8 = 48 – 13 = 35

Δ(А) = 35

Найдём Δ1, Δ2, Δ3

Δ1 = =

= 3 ∙ 1 ∙ 6 + (-3) (-2) ∙ 0 + 1 ∙ 4 ∙(-2) – 0 ∙1 ∙ 1 – 4 ∙ (-3) ∙ 6 – 3 (-2) (-2) =

= 18 + 0 – 8 – 0 + 72 – 12 = 90 – 20 = 70

Δ2 (А) =  =

= 2 ∙ 4 ∙ 6 + 3 ∙ (-2) ∙ 3 + 1 ∙ 1 ∙ 0 – 3 ∙ 4 ∙ 1 – 1 ∙ 3 ∙ 6 – 2 ∙ 0 ∙ (-2) =

= 48 – 18 + 0 – 12 -18 – 0 = 0

Δ3 = =

= 2 ∙ 1 ∙ 0 + (-3) 4 ∙ 3 + 3 ∙ 1 ∙(-2) – 3 ∙1 ∙ 3 – 1 ∙ (-3) ∙ 0 – 2 ∙ (-2) 4 =

= 0 – 36 – 6 – 9 + 0 + 16 = – 20 – 15 = – 35

Найдем корни:

 

 

 

 

Ответ: 2; 0; –1

Задание № 40

Исследовать данную систему уравнений на совместность и решить её, если она совместна.

 

Запишем матрицу А и найдем ранг матрицы А:

 

Поменяем местами первую и вторую строки:

 


Первую строку умножим на 3 и вычтем из неё вторую, первую умножим на 5 и вычтем из неё третью:

 

Вычтем из второй строки – третью:

 

Ранг матрицы

Запишем расширенную матрицу

Найдем определитель расширенной матрицы. Поменяем местами первую и вторую строки:

 

Умножим первую строку на 3 и вычтем из неё вторую, умножим первую строку на 5 и вычтем из неё третью:

 

Вычтем из второй строки третью:


 

Ранг расширенной матрицы

Ранг расширенной матрицы системы не равен рангу матрицы системы, значит система несовместна (не имеет решений).

Задание № 54

Даны координаты точек А (х11) и В (х22) и радиус окружности R, центр которой находится в начале координат.

Требуется:

1) составить каноническое уравнение эллипса, проходящего через данные точки А и В;

2) найти полуоси, фокусы и эксцентриситет этого эллипса;

3) найти все точки пересечения эллипса с данной окружностью;

4) построить эллипс и окружность.

Решение:

1.  Общий вид канонического уравнения эллипса:

Подставим координаты точек А и В в общее уравнение:

 

 

 

 

 

 

 

 

 

 

Подставляем найденные переменные в общее уравнение эллипса:

2.  Полуоси:

 

 

 

 

 

 

 

3.  Точки пересечения данного эллипса с окружностью R=8, найдем решив систему уравнений:

 

 

 

 

 

 

 

 

 

 

 

Получили четыре точки пересечения эллипса с окружностью:

 

4.

Описание: 1.emf


 

Задание № 69

Дано: вершины пирамиды АВСD

1.  Записать векторы    в системе орт и найти их модули:

А (3; 3; –3); В (7; 7; –5); С (5; 14; –13); D (3; 5; –2).

 = (7 – 3; 7 – 3; –5 + 3) = (4; 4; –2)$

;

 =  = 6;

 = (5 – 3; 14 – 3; –13 + 3) = (2; 11; –10);

 = 2i + 11j – 10k;

 = 15;

 = (3 – 3; 5 – 3; –2 + 3) = (0; 2; 1);

 =  =  

2.  Найти угол между векторами  и  :

 

 

3.  Найти проекцию вектора  на вектор :

 

Найти площадь грани АВС:

 

 =

;

Найти объем пирамиды ABCD:

 

=  =

 

 

 

Задание № 93

Даны координаты точек А, В, С, М:

А (5; 4; 1); В (–1; –2; –2); С (3; –2; 2); М (–5; 5; 4).

1.Найти уравнение плоскости Q, проходящей через точки А, В, С:

 = 0;

 = 0;

(x – 5)( – 6 – 18) – (y – 4)( – 6 – 6) + (z – 1)(36 – 12) = 0;

– 24(x – 5) + 12(y – 4) + 24(z – 1) = 0;

– 2(x – 5) + (y – 4) + 2(z – 1) = 0;

–2x + 10 + y – 4 + 2z – 2 = 0;

–2x + y + 2z + 4 = 0 – уравнение плоскости Q.

2.Составить каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q:

Подставим координаты точки М (–5; 5; 4) и коэффициенты общего уравнения плоскости Q (–2; 1; 2) в каноническое уравнение прямой:

 

3.Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями хОу, уОz, xOz: пусть

 

Где t – некоторый параметр, тогда уравнения прямой можно записать так:

 

 

Подставим данные выражения в уравнение плоскости Q и найдем параметр t:

 

 

 

 

 

Подставим значение параметра t в уравнения и найдем координаты точки пересечения:

 

 

 

Итак, координаты точки P, точки пересечения полученной во втором пункте прямой и плоскости Q: Р.

Р1 – точка пересечения прямой с с хОу: z = 0;

 

 

 

 

 

 

 

P1 (2,6; 1,2; 0).

P2 – точка пересечения прямой с уОz: x = 0;

 

 

 

 

 

 

 

P2 (0; 1,6; 2,8).

Р3 - точка пересечения прямой с xOz: y = 0;

;

 

 

 

 

 

 

P3 (0,5; 0; 1,5).

Найти расстояние от точки М до плоскости Q:

т.к. прямая МР перпендикулярна плоскости Q, точка Р принадлежит плоскости Q, то расстояние между точками М и Р и будет расстоянием от точки М до плоскости Q.


Производная и дифференциал

Задание № 114

Найти пределы:

 

Разложим на множители и числитель и знаменатель:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задание № 135

Функция у задана различными аналитическими выражениями для различных областей изменения аргумента х.

 


Информация о работе «Элементы алгебры и геометрии»
Раздел: Математика
Количество знаков с пробелами: 6477
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
43221
0
0

... уже в связи с этим исследований в области астрономии, физики, механики, требовавших точных измерений, не только очень скоро обнаружились противоречия и неправильности египетской геометрии, но и в исправленном виде ее скудный материал перестал удовлетворять возросшим потребностям. Элементарные приемы непосредственного наблюдения восточной геометрии были бессильны перед новыми задачами. Чтобы их ...

Скачать
54001
3
18

... координат состоит в том, что его применение избавляет от необходимости прибегать к наглядному представлению сложных пространственных изображений. Можно выделить следующие цели изучения метода координат в школьном курсе геометрии: - дать учащимся эффективный метод решения задач и доказательства ряда теорем; - показать на основе этого метода тесную связь алгебры и геометрии; - способствовать ...

Скачать
30627
0
4

... котором четыре прямые суть эквидистанты АВ, IH, ED, GF, а пятая GA к ним перпендикулярна (рис. 9), причем CF·CD·CH = СВ·СМ·а, где а — расстояние между соседними эквидистантами. Здесь появляется первое в истории аналитической геометрии уравнение кривой третьего порядка. Обозначив СВ = у, СМ = х, Декарт находит у3 — 2ay2 — аау + 2а3 = аху, т. е. уравнение трезубца (см. стр. 106), и показывает, что ...

Скачать
17016
0
0

... образ математики, сыгравший формирующую, заправляющую роль. Из математики исламской культуры приходит подчеркнутое пристрастие к алгоритмическим методам, к знанию, сформулированному в виде правил и рецептов. Декарт, демонстрируя в своей книге мощь нового метода аналитической геометрии, существенно преакцинтирует само понимание геометрии - и в смысле метода, и в смысле предмета. Причины этой ...

0 комментариев


Наверх