5. Практическое применение геометрии Лобачевского.

1) Теорема Пифагора.

 

Теорема. Для всякого прямоугольного треугольника плоскости Лобачевского выполняется равенство ch c = ch a ·ch b, где a, b - длины катетов, c - длина гипотенузы этого треугольника, а ch x=(гиперболический косинус).

Доказательство. Воспользуемся моделью Пуанкаре плоскости Лобачевского на евклидовой полуплоскости. Будем считать (см. рисунок ниже), что вершинам A, B, C данного прямоугольного треугольника соответствуют комплексные числа  где так как этого всегда можно добиться с помощью некоторого неевклидова движения.

Используя формулу

для вычисления неевклидова расстояния между точками z и w в H2, получаем, что

Почленное перемножение двух первых соотношений и приводит, как показывает третье соотношение, к завершению доказательства теоремы.

2) Замечание к теореме Пифагора Н.И.Лобачевским было замечено, что созданная им неевклидова геометрия в бесконечно малом, то есть в первом приближении, совпадает с геометрией евклидовой плоскости. Проиллюстрируем это на примере теоремы Пифагора. Используя разложение гиперболического косинуса в ряд

получим для теоремы Пифагора соотношение

Исключая теперь члены низшего порядка, приходим к теореме Пифагора евклидовой геометрии:

3) Площадь треугольника

Подробный вывод формулы площади треугольника на плоскости Лобачевского я приводить не буду ввиду его сложности (в нем используется формулы, доказываемые лишь в курсе дифференциальной геометрии).

Если ABC - треугольник в модели Пуанкаре, меры углов A, B и C - α, β и γ соответственно,  - мера угла B в треугольнике ABD, а  и  мера углов B и C в треугольнике BCD. Тогда

Вследствие этого можно сформулировать теорему

Теорема.Для площади треугольника ABC с угламисправедлива формула

Следствие1.Площадь треугольника плоскости Лобачевского ограничена.

Следствие 2.Если дан выпуклый многоугольник  с внутренними углами  то

 4) Длина окружности и площадь круга.

Теорема. Площадь круга с радиусом r равна  

а длина окружности, ограничивающей этот круг, равна , где . Длина неевклидовой окружности не пропорциональна радиусу, как в случае евклидовой геометрии, а растет быстрее. Также площадь неевклидова круга больше площади круга евклидовой плоскости, имеющего тот же радиус.


6. Вывод:

Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.

Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.


Список источников:

1.  Математика XIX века, «Наука», М., 1981

2.  “Квант” №11,№12 Академик АН СССР А.Д. Александров, Интернет-издания.

3.  Юшкевич А.П., История математики в России, «Наука», М., 1968

4.  Ефимов Н.В., Высшая геометрия, «Наука», М.,1971.

5.  Неевклидовы пространства и новые проблемы физики, «Белка», М., 1993

6.  Клайн М., Математика. Утрата определенности, «Мир», М., 1984

7.  Г.И. Глейзер. История математики в школе IX – X классы. Пособие для учителей. Москва, «Просвещение» 1983г.

8.  Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир.1986г.

9.  Б.Л. Лаптев. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. «Просвещение», 1970г.

10.  И.М. Яглам. Принцип относительности Галилея и неевклидова геометрия. Серия «Библиотека математического кружка» М: 1963г.

11.  http://www.bankreferatov.ru

12.  http://www.refportal.ru

13.  http://www.edu.ru

14.  http://www.

15.  http://www.themesoch.narod.ru/t_s

16.  http://www.referat.online.ru

17.  http://www.pautina.net


Информация о работе «Неевклидова геометрия»
Раздел: Математика
Количество знаков с пробелами: 24411
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
30204
0
2

... представить другие геометрии Кант счел достаточным основанием, чтобы утверждать, что другие геометрии не могут существовать. Появление неевклидовой геометрии Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в ...

Скачать
111639
2
4

... , т. е. такие пары точек считаются за одну точку. Из этого определения следует, что при возрастании n число типов неевклидовых пространств также растет. Неевклидовы геометрии являются геометриями простейших римановых пространств определенной и неопределенной метрики, составляющих так называемый класс пространств постоянной ненулевой кривизны. Каждое из таких n-мерных пространств допускает ...

Скачать
29003
0
1

... целых три доказательства V постулата, ошибочность которых быстро показали его современники. Последнее «доказательство» он опубликовал в 1823 году, за три года до первого доклада Лобачевского о новой геометрии. Открытие неевклидовой геометрии В первой половине XIX века по пути, проложенному Саккери, пошли сразу три математика: К.Ф. Гаусс, Н.И. Лобачевский и Я. Бойяи. Но цель у них была уже иная ...

Скачать
22421
0
11

... живой. Пусть новых линий не начертят руки, Он здесь стоит, взнесенный высоко, Как утверждение бессмертья своего, Как вечный символ торжества науки. Другие авторы. Идея неевклидовой геометрии пришла в голову не только Лобачевскому – просто ему относительно повезло. Одним из «конкурентов» был Гаусс – великий затворник, отказавшийся от услуг почты, чтобы никто не смог обвинить его в плагиате. ...

0 комментариев


Наверх