1. R(P) = N(I-P) = {xÎX, Px = x}, где I – тождественное отображение;
2. R(P)ÇN(P) = {0} и X = R(P)+N(P);
Доказательство 1.
а) Так как (I-P)P = IP- = P-P = 0, то R(P) содержится в N(I-P);
б) Если x принадлежит N(I-P), то x-Px = 0, следовательно, x = Px принадлежит R(P), значит N(I-P) содержится в R(P);
Таким образом, из а) и б) следует, что R(P) = N(I-P).
Доказательство 2.
Если x принадлежит пересечению R(P) и N(P), то x=Px=0, а следовательно, R(P) и N(P) пересекаются по {0};
Для любого x из X можно представить в виде x=Px+(x-Px), где Px принадлежит R(P) и x-Px принадлежит N(P), значит X=R(P)+N(P);
Определение. М – замкнутое подпространство топологического векторного пространства X. Если в X существует такое замкнутое подпространство N, что X=M+N и MÇN={0}, то говорят, что М дополняемо в X и что X является прямой суммой подпространств X=MÅN.
Определение. Топологическое векторное пространство X называется F-пространством, если топология порождается некоторой полной инвариантной метрикой.
Теорема o замкнутом графике.
Предположим, что X и Y являются F-пространствами, отображение Т:X→Y линейно и множество G={(x, Tx): xÎX} (его график) замкнуто в X´Y. Тогда Т – непрерывно.
Предложение 2. Пусть Ù - линейный функционал на топологическом векторном пространстве X. Допустим, что Ùx ¹0 для некоторого x из X.
Тогда если Ù непрерывен, то ядро N(Ù) замкнуто в X.
Доказательство.
Так как N(Ù) = Ù({0}), а {0} – замкнутое множество поля скаляров (как любое одноточечное подмножество), то тогда непрерывность Ù влечет замкнутость ядра (как прообраз замкнутого множества при непрерывном отображении).
Теорема 1.
а) Если Р – непрерывный проектор в топологическом векторном пространстве X, то X представляется в виде прямой суммы подпространств X=R(P)ÅN(P);
б) Обратно: если Х является F-пространством и X представляется в виде прямой суммы подпространств Х=АÅВ, то проектор Р с образом А и ядром В непрерывен.
Доказательство:
а) Так как Р и I-P непрерывны, то подпространства N(P) и R(P)=N(I-P) замкнуты (см. предложение 2), значит по второму свойству проекторов X=R(P)ÅN(P);
Чтобы доказать б) достаточно проверить, что проектор Р удовлетворяет условиям теоремы о замкнутом графике .
Пусть последовательности x→x и Px→y.
Так как Px принадлежит А, А – замкнуто, следовательно y принадлежит A, а значит y = Py.
Аналогично x- Px принадлежит В, В – замкнуто, следовательно x-y принадлежит B, значит Py = Px поэтому y = Px. Получили, что точка (x, y) принадлежит G (см. теорему о замкнутом графике). Отсюда вытекает, что проектор Р непрерывен.
Определение. Топологической группой называется группа G, снабженная такой топологией, относительно которой групповые операции в G непрерывны.
Расшифровка этого определения состоит в том, что постулируется непрерывное отображение j:G´G®G, определенного равенством: j(x,y)=xy.
Определение. Топологическая группа G, топология которой компактна, называется компактной группой.
Определение. Топологическое векторное пространство X называется локально выпуклым, если в нем всякое непустое открытое множество содержит непустое выпуклое открытое подмножество.
Определение. Пространство X называется пространством Фреше , если оно является локально выпуклым F-пространством.
Определение. Предположим, что топологическое векторное пространство X и топологическая группа G связаны следующим образом: кждому элементу s из G сопоставлен непрерывный линейный оператор T:X®X, причем
T = TT, где s, t принадлежат G
и отображение (s, x) ® Tx прямого произведения G´X в пространстве X непрерывно. В этом случае говорят, что группа G непрерывно и линейно действует в пространстве X.
Теорема 2.
Пусть Y – дополняемое подпространство Фреше Х, и пусть компактная группа G непрерывна и линейно действует на Х, причем Т(Y)ÌY для любого sÎG. Тогда существует непрерывный проектор Q пространства Х на подпространство Y, коммутирующий со всеми операторами Т.
Лемма Фату. Пусть на множестве E задана последовательность измеримых, почти всюду конечных функций f (x), которая сходится по мере к некоторой почти всюду конечной функции f . Тогда
dm £ dm
Пример недополняемого подпространства.
Рассмотрим подпространство Y=H пространства Х=L, где L- пространство всех суммируемых функций на комплексной плоскости, а H состоит из всех функций L, для которых (n)=0, при всех n<0. (n) обозначает n-ый коэффициент Фурье функции f и вычисляется:
(n)=edx, (n=0,1, 2, …). (1)
(для простоты обозначается: f(x)=f(e )).
В качестве группы G возьмем мультипликативную группу всех комплексных чисел, по модулю равных 1, и сопоставим каждому элементу
e ÎG оператор сдвига t, полагая, что
(tf)(x) = f(x+s), где s – некоторое вещественное число. (2)
Теперь посмотрим, как изменяются коэффициенты Фурье при таком сдвиге: ()(n) =e dx.
Произведем замену: x+s = t Þ x = t-s. Тогда
()(n)=ed(t-s) =
= eedt=eedt=e (n),
то есть (tf)(n)= e (n). (3).
Так как e ÎG, то t(H) = H для любого вещественного s.
Если бы подпространство H было дополняемо в L, то из Т2. следовало бы существование такого непрерывного проектора Q пространства L на H, что tQ = Qt для любого вещественного s. (4).
Найдем вид проектора. Положим e(x)=e . Тогда te=ee, а так как оператор Q линеен, то
Qte = eQe. (5).
Из (4) и (5) следует, что
(Qe)(x-s) = e (Qe)(x). (6).
Пусть С = (Qe)(0). При Q = 0 соотношение (6) имеет вид
Qe = Ce. (7).
Воспользуемся тем, что образом оператора Q служит подпространство Н. Так как Qe принадлежит H для любого n, то из (7) следует, что
С = 0 для любого n<0. Так как Qf = f для любого f из H, то С = 1 при любом n³0.
Таким образом, проектор Q должен являться «естественным», то есть его действие сводится к замене нулями всех коэффициентов Фурье с отрицательными номерами:
Q(e)=e. (8).
Рассмотрим функцию f (x) = e, (0<r<1), (9).
которая представляет собой ядро Пуассона: , в частности f>0. Поэтому
= dx = dx = 1 для любого r. (10) Но (Qf)(x) = e = (11).
Так как dx = ¥, то из леммы Фату следует, что ® ¥, при
r ® 1. В силу (10) это противоречит непрерывности оператора Q.
Таким образом, доказано, что H недополняемо в L.
Часть II. Дополняемость в гильбертовых пространствах.
Гильбертово пространство.
Комплексное векторное пространство Н называется пространством с внутренним произведением (унитарное пространство), если каждой упорядоченной паре векторов x,y из Н сопоставлено комплексное число (x,y), называемое скалярным и:
а) (y,x)=, "x, yÎH;
b) (x+y,z)=(x+z)+(y+z), "x, y, zÎH;
c) (ax,y)=a(x,y), "x, yÎH, "aÎC;
d) (x,x)³0, "xÎH;
e) (x,x)=0 Û x=0, "xÎH;
Если (x,y) = 0, то говорят, что x ортогонален y (обозначение x^y).
Если Е подмножество Н, F подмножество H, то Е^F обозначает, что (x,y) = 0 для любых x из E и любых y из F.
Через Е обозначаются все y из H, ортогональные каждому из векторов x из E.
Нормой в пространстве Н называется число .
Если полученное нормированное пространство является полным, то оно называется гильбертовым пространством.
Примеры гильбертовых пространств.
1) l - комплексное гильбертово пространство, в котором скалярное произведение определяется формулой (x, y) = ;
2) L(0,1) - гильбертово пространство, в котором скалярное произведение определено формулой
(f, g) = dx.
Теорема3:
М – замкнутое подпространство гильбертова пространства Н, следовательно H можно представить в виде прямой суммы M и М (Н=МÅМ, М - ортогональное дополнение к М).
Доказательство:
Если Е подмножество Н, то из линейности скалярного произведения (x,y) по x следует, что Е является подпространством в Н. Допустим, что элементы g принадлежат Е и сходятся к g. Тогда для любого f из E
(g, f) = = 0, и потому g тоже входит в Е, значит Е - замкнутое подпространство.
(1) Если х принадлежит М и х принадлежит М, то (х, х) = 0, а это будет тогда и только тогда, когда х = 0, следовательно МÇМ={0}.
(2) Пусть х принадлежит Н.
Рассмотрим множество х-М = {х-х: хÎМ}, причем х такой, что он минимизирует величину . Пусть х = х-х, следовательно, £ для любых y из М, значит, х принадлежит М, поэтому для любого х из Н х можно представить в виде х = х+х, где х из М и х из М.
Из (1) и (2) следует, что Н представимо в виде прямой суммы М и М Н=МÅМ, следовательно любое подмножество в гильбертовом пространстве дополняемо.
Примеры дополняемых подпространств в гильбертовом пространстве.
1) в l рассмотрим элементы x = (x, …,x, …), у которых x= 0 при четных n и x произвольные при n нечетных. Эти элементы образуют в l замкнутое подпространство. Назовем его X.
Рассмотрим также элементы y = (y, …, y, …), у которых y произвольные при четных n, и y= 0 при нечетных n. Эти элементы образуют замкнутое подпространство в l, и при этом это подпространство является ортогональным дополнением к X, так как их скалярное произведение равно 0. Следовательно, по Т3. X дополняемо в H с помощью X.
2) L(0,1).
Пусть X – подпространство L(0,1), состоящее из тех функций L(0,1), которые обращаются в 0 на интервале (0, а].
Пусть Y – подпространство L(0,1), состоящее из тех функций L(0,1), которые в ноль не обращаются на интервале [a, 1).
Тогда Y является ортогональным дополнением X, так как их скалярное произведение равно 0, а значит X дополняемо в L(0,1) с помощью Y.
Часть III. Задача о дополняемости.
Пусть С[0, 2p] - множество непрерывных 2p периодических функций на отрезке [0, 2p].
Пусть Е – множество четных чисел и пусть
С = {f(x)Î С: (n) = 0 "nÏE}.
Требуется доказать, что С дополняемо в С[0, 2p].
Доказательство:
Чтобы доказать требуемое, необходимо найти такой непрерывный проектор, который бы отображал множество С[0, 2p] на С(Т1.), таким образом, чтобы коэффициенты Фурье функций, стоящие на нечетных номерах, отображались бы в 0, а на четных оставались бы без изменения.
Рассмотрим оператор P = (t+I), где t - оператор сдвига на p, а I - тождественное отображение.
t ограничен, так как мы имеем дело с 2p периодическими функциями, так как
= = 1, то есть С = 1.
А раз он ограничен, то следовательно и непрерывен (предложение 1).
I - тоже непрерывен.
Теперь посмотрим, как изменятся коэффициенты Фурье функций при таком отображении.
1) n = 2k-1, где к – целое.
(()(2k-1)+()(2k-1)) =
= (e (2k-1)+ (2k-1)) = (2k-1)( e +1). (*)
Так как e =cos j+isin j, значит e = cos ((2k-1)p)+isin((2k-1)p).
При любом k – целом выражение cos ((2k-1)p)+isin((2k-1)p) = -1, а, следовательно, и выражение (*) принимает значение 0. Мы показали, что коэффициенты Фурье функций, стоящие на нечетных номерах при таком отображении обращаются в 0.
2) n=2k, где k – целое.
(()(2k)+( )(2k)) = (e (2k)+ (2k)) =
= (2k)( e +1). (**)
При любом k – целом выражение cos (2kp)+isin(2kp) = 1, а следовательно и выражение (**) не изменяет своего значения, то есть равно (2k). Мы показали, что коэффициенты Фурье функций, стоящие на четных номерах при таком отображении не изменяются, то есть оператор Р действительно является проектором.
Таким образом, нашелся такой непрерывный проектор P: С[0, 2p]® С, следовательно С дополняемо в С[0, 2p].
Литература.
1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука. 1989.
2. Рудин Уолтер. Функциональный анализ. М., Наука. 1975.
3. Вулих Б.З. Краткий курс в теорию функций вещественной переменной. М., Наука. 1973.
... , называется оператором сдвига, если он каждую последовательность вида (х1,х2,…, хn…) переводит в последовательность вида (0, х1, х2, …, хn…), т.е. выполняется равенство: (х1,х2,…, хn…)=(0, х1, х2, …, хn…). Можно также рассматривать оператор сдвига, который действует в пространстве последовательностей, бесконечных в обе стороны. Элемент этого пространства можно представить в таком виде: (…х-2, ...
... . Приведенные примеры показывают возможность конструктивного участия и взаимодействия всех выведенных понятий, как в анализе продуктов дизайна, так и в процессе проектирования. 3.2 Проектирование гармоничной предметной среды средствами индустриального дизайна Неконгруэтность в детском игровом оборудовании. Фокусируя понятийный аппарат на анализ конкретного решения, прежде всего проясним, в чем ...
... устройство; дисковод компакт-дисков, DVD-дисков или дисковод гибких дисков. Программные требования: Windows XP. Глава 2. Проектирование автоматизированного рабочего места оператора валютно-обменных операций в режиме off-line 2.1 Выбор технологии и средств проектирования. 2.1.1 Изучение существующих технологий и выбор технологии проектирования Технология проектирования – это ...
... их в жизнь. Суть их заключается в следующем. 1. Конечным, выходным результатом инженерно-психологических разработок должно быть получение и оптимизация обобщенных показателей деятельности оператора и системы "человек - машина", и прежде всего таких, как эффективность, надежность, точность, быстродействие и др. При этом следует иметь в виду, что стабильные и высокие значения этих ...
0 комментариев