1. Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества А и не менее 12 единиц питательного вещества В. Какое количество корма надо расходовать ежедневно на одно животное, чтобы затраты были минимальными? Использовать данные таблицы:

Питательное вещество Количество питательных веществ в 1 кг корма
1 2

А

В

2

2

1

4

Цена 1 кг корма, тыс. руб. 0,2 0,3

Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум, и почему?

Решение:

Введем обозначения:

Х1 – количество корма 1 вида;

Х2 – количество корма 2 вида.

Целевая функция – F = 0,2 х1 + 0,3 х2

Ограничения: 2х1+1х2≥6

2х1+4х2≥12

х1, х2≥0

Решим задачу графическим способом

Первое ограничение имеет вид 2х1+1х2≥6, найдем пересечение с осями координат

Х1 0 3
Х2 6 0

Второе ограничение 2х1+4х2≥12, найдем пересечения с осями координат

Х1 0 6
Х2 3 0

Для определения направления движения к оптиму построим вектор – градиента Їс (с12), координаты которого являются частными производными целевой функции, т. е. с (0,2;0,3).

Этот вектор показывает направление наискорейшее изменение функции.

Прямая f(х) = 0,2х1 + 0,3х2 = а1, перпендикулярная вектору – градиенту, является линией уровня целевой функции.

Для нахождения координат точки максимума решаем систему

2х1 + х2 = 6

2х1 + 4х2 =12

-3х2 = -6

х2 = 2

2х1+2=6

2х1 =4

х1 =2

Ответ: (2;2)

Fmin = 0,2*2+0,3*2=0,4+0,6=1

График:

Ответ: чтобы затраты были минимальными необходимо расходовать 2ед. первого корма и 2 ед. второго корма.

Если данную задачу решать на максимум, то задача не имеет решения, так как целевая функция не ограничена сверху, т. е Fmax=+∞

2. Для изготовления четырех видов продукции используют три вида сырья. Запасы сырья, нормы его расхода и цены реализации единицы каждого вида продукции приведены в таблице.

тип сырья норма расхода сырья на одно изделие запасы сырья
А Б В Г
1 1 0 2 1 180
2 0 1 3 2 210
3 4 2 0 4 800
цена изделия 9 6 4 7

Требуется:

1. Сформулировать прямую оптимизационную задачу на максимум выручки от реализации готовой продукции, получить оптимальный план выпуска продукции.

2. Сформулировать двойственную задачу и найти ее оптимальный план с помощью теории двойственности.

3. Пояснить нулевые значения переменных в оптимальном плане.

4. На основе свойств двойственных оценок и теорем двойственности:

-   Проанализировать использования ресурсов в оптимальном плане исходной задачи;

-   Определить, как изменяется выручка и план выпуска продукции при увеличении запасов сырья 2 и 3 видов на 120 и 160 единиц соответственно и уменьшении на 60 единиц запасов сырья 1 вида;

-   Оценить целесообразность включения в план изделия Д ценой 12 единиц, на изготовление которой расходуется по две единицы каждого вида сырья.


Решение:


Информация о работе «Экономико-математическое моделирование производства»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 15576
Количество таблиц: 19
Количество изображений: 3

Похожие работы

Скачать
51386
5
18

... ai- расход сырья на единицу продукции; B - общий запас сырья; W - область допустимых ограничений; Тема 2. Метод математического моделирования в экономике. 2.1. Понятие “модель” и “моделирование”. С понятием “моделирование экономических систем” (а также математических и др.) связаны два класса задач: 1)            задачи анализа, когда система подвергается глубокому изучению ее ...

Скачать
54963
0
0

... отрезка времени. Как правило, это задача, решение которой влечет за собой постановки близких или аналогичных задач. Глава 2. Экономико-математическое моделирования процессов принятия управленческих решений. В классификации решений по времени действия выражается принцип их цикличности, определенная хронологическая последовательность, временные рамки которой неизбежно должны учитываться в процессе ...

Скачать
19308
0
0

... производственной функции, моделей поведения фирмы, моделей общего экономического равновесия, прежде всего модели Л. Вальраса и ее модификаций. Глава 2. История развития экономико-математического моделирования в США Для характеристики математического направления в экономике за последние 80 – 90 лет приведу лишь некоторые результаты, сыгравшие заметную роль в его развитии. Как в теоретическом, ...

Скачать
21685
14
1

... <= 2,10 В разделе 1 проекта требуется: 1.    Определить количество закупаемого заданным филиалом фирмы сырья у каждого АО, (xj), максимизируя прибыль филиала. Нужно формулировать экономико-математическую модель общей задачи линейного программирования (ОЗЛП); 2.    С помощью полученных в результате реализации модели отчетов сделать рекомендации филиалу фирмы по расширению программы ...

0 комментариев


Наверх