1.7.2 Расчет и построение дифференциального и интегрального ТЗР
Для нормального закона распределения
Так как при составлении статистического ряда (см. таблицу 4) были вычислены не статистические плотности функции распределения , а опытные вероятности попадания наблюдений в -й интервал , то для обеспечения сравнимости распределений вычислим теоретические вероятности этих же событий по зависимости:
, (11)
где – длина интервала, принятая при построении статистического ряда;
– квантиль нормального распределения, значение которого вычислено для середины -го интервала ;
– значение центрированной и нормированной плотности распределения из приложения Г [1] (при этом следует учесть, что );
n - число интервалов, принятое при составлении статистического ряда.
Пример решения для середины 1-го интервала:
Значения теоретических вероятностей запишем в таблицу 6.
Таблица 6 - Значения теоретических вероятностей
Середина интервала, мм | 0,025 | 0,031 | 0,038 | 0,044 | 0,050 | 0,057 | 0,063 | 0,070 | 0,076 | 0,082 | ||||||||||
Плотность функции распределения f(z) | 0,11 | 0,19 | 0,29 | 0,37 | 0,4 | 0,37 | 0,29 | 0,19 | 0,11 | 0,05 | ||||||||||
Теоретическая вероятность | 0,044 | 0,076 | 0,117 | 0,149 | 0,162 | 0,149 | 0,117 | 0,076 | 0,044 | 0,02 | ||||||||||
Вычисление функции распределения осуществляется по зависимости:
; , (12)
где – квантиль нормального распределения, значение которого вычислено для конца -го интервала ;
– значение интегральной функции нормального распределения (при этом следует учесть, что ).
Вычислим функцию распределения на 1-м интервале:
.
Значения функции распределения запишем в таблицу 7.
Таблица 7 – Значения функции распределения
Границы интервала, мм | 0,0220 ... 0,0284 | 0,0284 ... 0,0348 | 0,0348 ... 0,0412 | 0,0412 ... 0,0476 | 0,0476 ... 0,0540 | 0,0540 ... 0,0604 | 0,0604 ... 0,0668 | 0,0668 ... 0,0732 | 0,0732 ... 0,0796 | 0,0796 … 0,0860 |
Функция распределения | 0,08 | 0,16 | 0,27 | 0,42 | 0,58 | 0,73 | 0,84 | 0,92 | 0,97 | 0,99 |
Используя значение функции распределения, можно определить теоретическое число интересующих нас событий (число отказов в i-м интервале) по формуле:
(13)
Определяем теоретическое число отказов в 1-м интервале: отказов.
Определим значения теоретических чисел для каждого интервала и заполним таблицу 8.
Таблица 8 – Значения теоретических чисел для каждого интервала
Функция распределения | 0,08 | 0,16 | 0,27 | 0,42 | 0,58 | 0,73 | 0,84 | 0,92 | 0,97 | 0,99 |
Теоретическая частота | 8 | 8 | 11 | 15 | 16 | 15 | 11 | 8 | 5 | 2 |
Для закона распределения Вейбулла.
Рассуждая аналогично п. 1.7.2, вычислим не , а теоретические вероятности попадания СВ в -й интервал, например, вероятность отказа объекта в -м интервале по зависимости:
; , (14)
где a, b - параметры закона распределения, причем а параметр масштаба, имеющий размерность случайной величины t;
b - параметр формы (безразмерная величина);
- смещение зоны рассеивания случайной величины t;
значения функции приведены в таблице Е.2[1].
Параметр определяют, используя коэффициент вариации. Из этого же приложения выбирают значения коэффициентов и :
Параметр рассчитывают по одному из уравнений:
или .
Пример решения для середины 1-го интервала:
Значения теоретических вероятностей запишем в таблицу 9.
Таблица 9 – Значения теоретических вероятностей
Середина интервала, мм | 0,025 | 0,031 | 0,038 | 0,044 | 0,050 | 0,057 | 0,063 | 0,070 | 0,076 | 0,082 |
Плотность функции распределения f(t) | 0,2 | 0,55 | 0,78 | 0,84 | 0,84 | 0,74 | 0,57 | 0,48 | 0,32 | 0,19 |
Теоретическая вероятность | 0,034 | 0,095 | 0,135 | 0,146 | 0,146 | 0,128 | 0,099 | 0,083 | 0,055 | 0,033 |
Функция распределения Вейбулла имеет вид:
(15)
Данная функция зависит от двух аргументов – от параметра и обобщенного параметра . Ее значения могут быть вычислены непосредственно по зависимости (15) или определены по таблице (приложение Ж [1]). Входами в эту таблицу являются:
– значение параметра ;
– значение обобщенного параметра ,
где – значение случайной величины на конце i-го интервала.
Вычислим функцию распределения на 1-м интервале:
Значения функции распределения запишем в таблицу 10.
Таблица 10 – Значения функции распределения
Границы интервала, мм | 0,0220 ... 0,0284 | 0,0284 ... 0,0348 | 0,0348 ... 0,0412 | 0,0412 ... 0,0476 | 0,0476 ... 0,0540 | 0,0540 ... 0,0604 | 0,0604 ... 0,0668 | 0,0668 ... 0,0732 | 0,0732 ... 0,0796 | 0,0796 … 0,0860 |
Функция распределения | 0,050 | 0,148 | 0,286 | 0,443 | 0,598 | 0,732 | 0,835 | 0,907 | 0,951 | 0,977 |
Используя значение функции распределения, можно вычислить теоретическое число интересующих нас событий, например, число отказов машин в -м интервале по формуле:
(16)
где N – общее число испытуемых (подконтрольных) объектов.
Определяем теоретическое число отказов в 1-м интервале:
Определим значения теоретических чисел для каждого интервала и заполним таблицу 11.
Таблица 11 – Значения теоретических чисел для каждого интпрвала
Функция распределения | 0,050 | 0,148 | 0,286 | 0,443 | 0,598 | 0,732 | 0,835 | 0,907 | 0,951 | 0,977 |
Теоретическая частота | 5 | 9,86 | 13,78 | 15,74 | 15,45 | 13,38 | 10,34 | 7,16 | 4,48 | 2,53 |
По вычисленным значениям и для всех интервалов строят графики и , которые приведены в приложениях В и Г.
Результаты выравнивания опытных данных теоретическими законами распределения представим в виде таблицы 12.
Таблица 12 – Результаты выравнивания опытных данных теоретическими законами распределения
Границы интервала, мм | 0,0220 ... 0,0284 | 0,0284 ... 0,0348 | 0,0348 ... 0,0412 | 0,0412 ... 0,0476 | 0,0476 ... 0,0540 | 0,0540 ... 0,0604 | 0,0604 ... 0,0668 | 0,0668 ... 0,0732 | ||
Середина интервала, мм | 0,025 | 0,031 | 0,038 | 0,044 | 0,050 | 0,057 | 0,063 | 0,070 | ||
Опытная частота | 5 | 11 | 17 | 14 | 15,5 | 7,5 | 8 | 12 | ||
Дифференциальный закон распределения | Опытная вероятность | 0,05 | 0,11 | 0,17 | 0,14 | 0,155 | 0,075 | 0,08 | 0,12 | |
Теоретическая вероятность | НЗР | 0,044 | 0,076 | 0,117 | 0,149 | 0,162 | 0,149 | 0,117 | 0,076 | |
ЗРВ | 0,034 | 0,095 | 0,135 | 0,146 | 0,146 | 0,128 | 0,099 | 0,083 | ||
Интегральный закон распределения | Накопленная опытная вероятность | 0,05 | 0,16 | 0,33 | 0,47 | 0,625 | 0,7 | 0,78 | 0,9 | |
Функция распределения | НЗР | 0,08 | 0,16 | 0,27 | 0,42 | 0,58 | 0,73 | 0,84 | 0,92 | |
ЗРВ | 0,050 | 0,148 | 0,286 | 0,443 | 0,598 | 0,732 | 0,835 | 0,907 | ||
Теоретическая частота | НЗР | 8 | 8 | 11 | 15 | 16 | 15 | 11 | 8 | |
ЗРВ | 5 | 9,86 | 13,78 | 15,74 | 15,45 | 13,38 | 10,34 | 7,16 |
... 550 мм (мод. SJL-VER-202) и 750 мм (мод. SJLVER-252). Можно использовать для вывешивания колес, для осмотра, обслуживания и ремонта тормозной системы, шин и т. д. 2. Устройство, принцип действия и техническая характеристика подъемника RAV 1400 А (Италия) Общий вид подъемника представлен на листе общего вида графической части проекта. Подъемник ножничный с электрогидравлическим приводом для ...
... подъемника ОМА 512 4.1 Монтаж оборудования Двухстоечный автомобильный подъемник устанавливается без фундамента непосредственно на пол или межэтажное перекрытие (возможность установки автомобильного подъемника в многоэтажных зданиях). Монтаж подъемника производить в следующей последовательности; 1. На выбранном месте уложить опорную раму и по восьми отверстиям в ней произвести разметку. ...
... и верхний торец гильзы. При установке гильзы используют приспособление. Которое крепится на столе станка. 6. Разработка технологического процесса восстановления гильз цилиндров двигателя ЗиЛ-130 Схема 1 Наименование дефекта Способ ремонта № операции Наименование и содержание операции Установочная база Износ зеркала гильзы Восстановление под ближайший ремонтный размер 1 2 ...
... нередко характеризуют как сочетание централизованной координации с децентрализованным управлением (децентрализация при сохранении координации и контроля). Ключевыми фигурами в управлении организациями с дивизиональной структурой становятся не руководители функциональных подразделений, а управляющие (менеджеры), возглавляющие производственные отделения. Структуризация организации по отделениям ...
0 комментариев