3.2.2.2 Эквивалентные нагрузки на подшипник с учетом переменности режима работы
,
что меньше e=0.37, следовательно X = 1 и Y = 0 (по табл.17.1, стр. 354, [1]).
,
что больше e=0.37, следовательно X = 0,4 и Y = 1,6 (по табл.17.1, стр. 354, [1]).
3.2.2.3 Определение расчетного ресурса подшипника
L10h = 1·0,65·(106/60·234)·(48400/4644,8)3,33 » 113522,3 часов >> L = 20000 часов.
3.3 Расчет подшипников на тихоходном валу
3.3.1 Определение сил, нагружающих подшипники.
При проектировании тихоходного вала редуктора применили роликовые радиально-упорные однорядные подшипники по схеме установки в распор.
Диаметр вала под подшипник: dп = 65 мм.
Fr = 2610,7 H
= 1159,8 H
Ft = 7078,6 H
T = 1140,5 Н·м
= 1159,8·322,24 ·=373,7 Н·м
3.3.1.1 Реакции в горизонтальной плоскости.
3.3.1.2 Pеакции в вертикальной плоскости
3.3.1.3 Реакции от консольной силы
3.3.1.4 Полная реакция в опорах .
В расчете принимаем наихудший вариант действия консольной силы
3.3.2.1 Предварительный выбор подшипника.
За основу берем роликовые радиально-упорные однорядные подшипники легкой серии:
7213А d=65мм, D=120мм, Tнаиб=25мм, r=2,5мм
Динамическая грузоподъемность Сr = 108 кН
Расчетные параметры: Y=1.5; e=0.4; X=0.4
3.3.2.2Эквивалентные нагрузки на подшипник с учетом переменности режима работы
,
что меньше e=0.4, следовательно X = 1 и Y = 0 (по табл.17.1, стр. 354, [1]).
,
что больше e=0.4, следовательно X = 0.4 и Y =1.5 (по табл.17.1, стр. 354, [1]).
3.3.2.3 Определение расчетного ресурса подшипника
L10h = 1·0,65·(106/60·42)·(108000/14463,4)3,33 » 208503,6 >> L = 20000 часов.
3.4 Расчет подшипников приводного вала
Исходные данные:
FК=8442 Н – консольная сила на конце вала;
lК=148 мм – расстояние до точки приложения консольной силы;
lоб=600 мм – расстояние между опорами;
lпр=300 мм – расстояние между звездочками;
l=150 мм - расстояние между звездочкой и опорой вала;
Ft=7100 H – окружная сила на двух звездочках;
n=42 об/мин
Определение радиальных реакций в опорах:
Реакции от окружной силы:
Реакции от консольной силы:
Суммарные реакции на опоры:
Опора 1 нагружена больше, следовательно, дальнейший расчет будет вестись по этой опоре.
Выбор подшипника.
Выбирается подшипник шариковый радиальный сферический двухрядный средней серии1313.
Определение эквивалентной нагрузки.
Определение расчетного ресурса.
Для сферического подшипника
следовательно, выбранный подшипник подходит.
Подбор посадки подшипника.
Внутреннее кольцо подшипника вращается, нагружение циркуляционное.
по таблице 7.6 [2 c.113] выбирается поле допуска на вал k6.
Наружное кольцо подшипника неподвижно, нагружение местное.
По таблице 7.7 [2 c.113] выбирается поле допуска на отверстие L0.
Проверку статической прочности выполняют в целях предупреждения пластических деформаций в период действия кратковременных перегрузок.
Уточненные расчеты на сопротивление усталости отражают влияние разновидности цикла напряжений, статических и усталостных характеристик материалов, размеров, формы и состояния поверхности.
4.1 Расчет тихоходного вала
4.1.1 Расчетная схема
Силы, действующие на вал.
Консольно действующая нагрузка.
... Национальный Технический Университет Кафедра Технической кибернетики ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту по курсу «Проектирование систем автоматического управления» «Проектирование системы автоматического регулирования угла поворота вала электродвигателя» Выполнила: ст. гр. А – 61з Брусинов С. Э. Проверил: Дубовик С.А. Оценка ________________ Дата «____» ...
... колеса , (1.12) где y – угол наклона зубьев при прямозубой передаче. Принимаю y = 0о; m – модуль зубчатого зацепления, принимаемый в зависимости от вращающего момента М и конструкции тяговой передачи. , (1.13) По эмпирическим формулам для прямозубых передач (1.14) где К – односторонняя передача. Принимаю К = 1, согласно [1]. Принимаем m = 10. Число зубьев ...
... по программе, устанавливаемой техническими условиями. Заключение По данным задания на курсовой проект спроектирован привод к скребковому конвейеру, представляющий собой электродвигатель, двухступенчатый цилиндрический косозубый редуктор и сварную раму. В процессе проектирования подобран электродвигатель, произведён расчёт редуктора. Расчёт редуктора включает в себя кинематические расчёты ...
... V,м/с Тип 200 315 391,5 45 17 138 1600 163,3 2057 149,7 10,15 прорезиненный ремень 4. Расчёт и конструирование редуктора Тип редуктора - цилиндрический двухступенчатый соосный. Быстроходная (первая) ступень редуктора - цилиндрическая с косозубыми колесами, тихоходная (вторая) - с прямозубыми. 4.1 Материалы зубчатых колес Основным материалом для изготовления зубчатых колес ...
0 комментариев