2.1.2 Определения размеров венцов зубчатых колес
Расчетное допускаемое напряжение:
,
.
В качестве расчетного контактного напряжения принимаем . Требуемое условие выполнено.
Межосевое расстояние быстроходной ступени:
, (2.1)
где для косозубых колес , а передаточное число быстроходной ступени , =0,4 [1, с.11].
Срок службы в редуктора в часах:
часа,
где =0,25, =0,4.
Число циклов нагружения редуктора:
,
где =192 об\мин.
Базовое число циклов нагружений -[смотрим график нагружений]:
,
где - средняя твердость колеса.
Коэффициент концентрации загрузки:
, где [1, с.11]
- эквивалентный момент на колесе, где - коэффициент долговечности, - крутящий момент на зубчатом колесе быстроходной ступени.
Коэффициент эквивалентной нагрузки:
Принимаем: .
Тогда .
.
Принимаем: .[1, с.12]
Делительный диаметр колеса:
.
Ширина колеса:
.
Модуль зацепления:
, (2.2)
где = 5,8 [1, с.12], допускаемое напряжение изгиба - ,
- эквивалентный момент на колесе.
Коэффициент долговечности:
, (2.3)
где - базовое число циклов нагружения.
Коэффициент эквивалентности: m=6 при термической обработке улучшения.
.
.
Принимаем , .
.
Принимаем m1=2мм.
Минимальный угол наклона зубьев:
.
Суммарное число зубьев:
зуба.
Определяем действительный угол наклона зубьев:
.
Число зубьев шестерни:
зубьев.
Число зубьев колеса:
зуба.
Уточняем передаточное число:
,
,
что допустимо [1, с.13].
Делительный диаметр шестерни:
.
.
Диаметры окружностей вершин:
,
.
Диаметры окружностей впадин:
,
.
Межосевое расстояние тихоходной ступени:
, (2.4)
где для косозубых колес , а передаточное число тихоходной ступени , =0,4 [1, с.11].
.
Коэффициент концентрации загрузки:
, где x=0,75 – коэффициент режима нагрузки
[1, с.11]
.
В качестве расчетного контактного напряжения принимаем .
.
.
Принимаем: [1, с.12].
Делительный диаметр колеса:
.
Ширина колеса:
.
Модуль зацепления:
, (2.5)
где = 5,8 [1, с.12], допускаемое напряжение изгиба - ,
- крутящий момент на колесе.
.
Принимаем m2=3мм.
Минимальный угол наклона зубьев:
.
Суммарное число зубьев:
зуба.
Определяем действительный угол наклона зубьев:
.
Число зубьев шестерни:
зубьев.
Число зубьев колеса:
зуба.
Уточняем передаточное число:
,
,
что допустимо [1, с.13].
Делительный диаметр шестерни:
.
.
Диаметры окружностей вершин:
,
.
Диаметры окружностей впадин:
,
.
... , Из выражения (3.21) . По формуле (3.22) определяем По формуле (3.23) Напряжение изгиба определяем по формуле (3.24) < . Прочность по напряжениям изгиба обеспечена. 4. РАСЧЕТ ТИХОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА Делительный диаметр шестерни d1 (мм) определяется из условия обеспечения контактной прочности по формуле из условия соосности межосевое расстояние аw= ...
... по программе, устанавливаемой техническими условиями. Заключение По данным задания на курсовой проект спроектирован привод к скребковому конвейеру, представляющий собой электродвигатель, двухступенчатый цилиндрический косозубый редуктор и сварную раму. В процессе проектирования подобран электродвигатель, произведён расчёт редуктора. Расчёт редуктора включает в себя кинематические расчёты ...
... Ширина – 10 мм. 3.4 Определение толщины стенки и размеров фланцев корпуса и прочих размеров редуктора Толщина стенки нижней части чугунного корпуса для цилиндрического двухступенчатого редуктора: где аw – межосевое расстояние. Из технологических соображений при δ<8мм принимают δ = 8мм. Толщина стенки крышки корпуса δ1 ≈ 0.9∙δ = 7 мм. Расстояние ...
... V,м/с Тип 200 315 391,5 45 17 138 1600 163,3 2057 149,7 10,15 прорезиненный ремень 4. Расчёт и конструирование редуктора Тип редуктора - цилиндрический двухступенчатый соосный. Быстроходная (первая) ступень редуктора - цилиндрическая с косозубыми колесами, тихоходная (вторая) - с прямозубыми. 4.1 Материалы зубчатых колес Основным материалом для изготовления зубчатых колес ...
0 комментариев