6.2.3 Мероприятия по электробезопасности
Помещение котельной по опасности поражения людей электрическим током относится к особо опасным, согласно ПУЭ. В электрических установках запрещается работать на токоведущих частях под напряжением. Поэтому здесь важно, чтобы однофазные выключатели были установлены в фазном проводе, а не в нулевом для того, чтобы в нулевом проводе, во время работы установки не было тока и падения напряжения, которое вызвало бы длительно существующий на зануленных частях потенциал относительно земли.
Допускается выполнять работу под напряжением на токоведущих частях, если она производится непосредственно на них с применением необходимых средств защиты от поражения электрическим током. Устранение неисправностей в системе электроснабжения разрешается производить только электрику. Обеспечение безопасности персонала обслуживающего электроустановки, а также, лиц, связанных с их обслуживанием электроустановок в ремонтной базе необходимо соблюдать следующие защитные мероприятия:
вести постоянный контроль изоляции при помощи прибора постоянного контроля (ПНК);
защита от случайного прикосновения к токоведущим частям;
применение механических блокировок;
покрытие механических корпусов слоем электроизоляционного материала;
зануление и заземление корпусов электрооборудования: трансформаторная подстанция заземлена контуром, расположенным по периметру корпуса, нулевой провод сети соединен с контуром заземления и шиной нулевого провода проложенного во всех помещениях корпуса котельной, к этой шине проведено зануление всех токоприемников находящихся в помещении корпуса;
применение предупредительной сигнализации.
6.2.4 Мероприятия по пожарной безопасности
По пожарной опасности помещения котельной относятся к категории Б. В соответствии с типовыми правилами пожарной безопасности в котельной несут руководители котельной, которые обязаны:
обеспечить соблюдение на введенных им участках работы установленного противопожарного режима;
следить за исправностью производственных установок и немедленно принимать меры к устранению обнаруженных неисправностей, которые могут привести к пожару;
обеспечить постоянную готовность к применению имеющихся средств пожаротушения, связи и сигнализации.
Основными причинами пожара в котельной являются:
взрыв газов в топках и дымоходах;
вылетающие из дымовой трубы искры;
неисправности электрооборудования, электропроводки, а также нарушение правил эксплуатации оборудования.
При возникновении пожара оператор обязан немедленно сообщить об этом пожарной охране или лицу ответственному за котельную. Если пожар непосредственно угрожает помещению котельной, необходимо остановить котлы в аварийном порядке (выключить питательные устройства, остановить вентиляторы и дымососы, удалить топливо из топки). Шибберы поддувания окна и двери котельной должны быть закрыты. После этого следует выпустить пар в атмосферу путем открывания предохранительных клапанов, и немедленно приступить к тушению пожара всеми имеющимися противопожарными средствами.
Исходя из площади помещения котельной и нормативной площади действия одного огнетушителя, применяются огнетушители типа ОУБ (углекислотно-бромэтиловый), так как он используется для тушения твердых и жидких горючих веществ, а также электроустановок находящихся под напряжением, поскольку бром этил не проводит электрический ток. Также для тушения пожара в котельной устанавливаются ящики с песком, и монтируется противопожарный водопровод.
Количество огнетушителей определяется по формуле:
N = Fоб / Fн, (6.8)
где Fоб ‑ площадь котельной, м2;
Fн ‑ нормативная площадь на один огнетушитель, м2.
N = 216 / 50 = 4,32 шт.
Принимаем 5 огнетушителей типа ОУБ – 5.
В котельной устанавливаем два пожарных крана с длиной рукава 40 м.
Требуемое количество воды для тушения пожара определяем по формуле:
Q = 3,6 · q · t · n, (6.9)
где q ‑ расход воды, л/с;
t ‑ расчетная продолжительность пожара, ч;
n ‑ число одновременных пожаров, шт.
Q = 3,6 · 10 · 3· 2 = 216 м3.
Также в котельной устанавливаем закрытые ящики с песком емкостью 1 м3.
6.2.5 Расчет рассеивания вредных примесей и высоты дымовой трубы
Загрязнение воздушной среды котельными установками связано с выбросом в дымовую трубу токсичных газов SO2, SO3 и мелко дисперсной золы. Кроме этого, при высоких температурах в ядре факела происходит частичное окисление азота с образованием окиси азота NO и NO2.
При неполном сгорании топлива в продуктах сгорания могут появиться оксид углерода, и даже метан CH4. Основным показателем, характеризующим загрязнение воздушной среды, является выброс вредностей в единицу времени.
Расчет рассеивания вредных примесей в атмосферу производится в соответствии с санитарными нормами СН‑369‑74 при неблагоприятных метеорологических условиях, а именно при опасной скорости ветра. Под опасной скоростью ветра понимается скорость, при которой концентрация вредных примесей на уровне обитания человека достигает максимальных значений.
В современных производственных и отопительных котельных дымовая труба служит не для создания тяги, а для отвода продуктов сгорания на определенную высоту, при которой обеспечивается рассеивание вредностей до допустимых санитарными нормами концентрации в зоне нахождения людей. За стандарт качества воздуха принимаются предельно допустимые концентрации (ПДК) различных токсичных веществ.
Минимальная высота дымовой трубы рассчитывается в следующей последовательности.
Определяется выброс оксидов азота, рассчитываемый по NO2:
MNO2 = 0.034· β1· R · B · (1‑ qи /100) · (1‑ β2 r) · β3 , (6.10)
где β1 ‑ поправочный коэффициент, учитывающий качество сжигаемого топлива, β1 = 0,85, [4];
R – коэффициент, характеризующий выход оксидов азота на 1т сжигаемого топлива;
B – расчетный часовой расход топлива, м3/ч;
β2 – коэффициент, характеризующий эффективность возделывания рециркулирующих продуктов, β2 = 0,02, [4];
β3 – коэффициент, учитывающий концентрацию горелок, β3 = 1, [4];
r – степень рециркуляции продуктов сгорания, r = 10, [4];
qи – потери теплоты от механической неполноты сгорания, qи = 0, [4].
R = 2,5 · Qуст / (20 + Qуст), (6.11)
где Qуст – установленная тепловая мощность котельной, МВт.
R = 2,5 · 14,6 / (20 + 14,6 ) = 0,95
MNO2 = 0.034· 0,85· 0,95 · 2002 · (1‑ 0 /100) · (1‑ 0,02 ·10) · 1= 10,9 г/с.
Диаметр устья дымовой трубы определяется по формуле:
Dтр = √ 4 · Vтр / (π · ωвых), (6.12)
где Vтр – объемный расход продуктов сгорания через трубу, м3/с;
ωвых – скорость продуктов сгорания на выходе из дымовой трубы, м/с, [4].
Dтр = √ 4 · 9,05/ (3,14 · 20) = 0,75 м.
По [4], принимается стандартный диаметр 1,2м.
Высота трубы определяется по формуле:
Н=√[А · (МSO2 + (ПДКSO2 /ПДКNO2)· МNO2) / ПДКSO2] · √ Z/(Vтр· ∆t), (6.13)
где МSO2 – выброс SO2 не учитывается;
А – коэффициент, зависящий от метеорологических условий, [4];
Z – число труб;
∆t – разность температур выбрасываемых газов и средней температуры воздуха, [4].
Н = √ [120· ((0,05/ 0,85) · 10,9) / 0,05] · √ 1 / (9,05· 200) = 20,3 м.
Определяем высоту дымовой трубы во втором приближении.
Определяем коэффициенты f и Vм поформулам:
f = (103 · ωвых2 · Dтр)/ (Н2 · ∆t), (6.14)
f = (103 · 202 · 1,2)/ (20,32 · 200) = 5,82.
Vм = 0,65· √ (Vтр· ∆t) / Н, (6.15)
Vм = 0,65· √ (9,05· 200) / 20,3 = 6,14.
По [4] определяем коэффициенты m и n: m =1,16; n =1.
Определяем минимальную высоту дымовой трубы во втором приближении:
Н1 = Н √ m · n, (6.16)
Н1 = 20,3 √ 1,16 · 1 = 21,3 м.
По [4],выбирается дымовая труба из кирпича диаметром 1,2 м, высотой 30 м.
0 комментариев