3.4 Построение продольного профиля
Продольный профиль представлен на 4 листе графической части данного проекта.
Продольный профиль участка тепловой сети строится в масштабе: по вертикали 1:100, 1:50; по горизонтали: 1:500, 1:1000. Его построение начинают с определения минимальной глубины теплового параметра по трассе с учётом габаритных размеров устанавливаемого в них оборудования.
На профилях сетей указывают:
поверхность земли;
уровень грунтовых вод;
пересекаемые автомобильные дороги, железнодорожные и трамвайные пути, кюветы, а также другие подземные и надземные коммуникации и сооружения, влияющие на прокладку проектируемых сетей, с указанием их габаритных размеров, высотных отметок, и при необходимости координат или привязок;
каналы, тоннели, ниши П‑образных компенсаторов, эстакады, отдельно стоящие опоры, вентиляционные шахты, павильоны и другие сооружения и конструкции сетей;
трубопроводы бесканальной прокладки;
неподвижные опоры.
Трубопроводы в каналах, тоннелях, камерах и нишах не изображают.
На профилях сетей надземной прокладки трубопроводы каждого яруса изображают одной сплошной основной линией.
Отметки сетей проставляют в характерных точках, в местах пересечений с автомобильными и железными дорогами, трамвайными путями, инженерными коммуникациями и сооружениями, влияющими на прокладку проектируемых сетей. Величины отметок и длины участков сетей указывают в метрах с двумя десятичными знаками, а величины уклонов ‑ в процентах. При надземной прокладке тепловых сетей, под профилями сетей помещают таблицу по форме 3, рис.3.
Форма 3.
Проектная отметка земли |
Натуральная отметка земли |
Отметка верха несущей конструкции |
Отметка низа трубы |
Уклон, % Длина, м |
Номер поперечного разреза |
Развернутый план |
Рис.3
4. Тепловой расчёт изоляционных конструкций трубопроводов
В задачу теплового расчёта теплоизоляционных конструкций входит:
выбор конструкций и толщины тепловой изоляции;
определение тепловых потерь теплопровода;
расчёт падения температуры теплоносителя по длине теплопровода.
В качестве изоляционного материала применяются – маты минераловатные шивные марки 100.
Тепловой расчёт проводится для подающего трубопровода первого участка.
Определяется термическое сопротивление слоя изоляции по формуле:
Rи = (1/2·π)·λ· ln(dн /dтр), (4.1)
где λ – коэффициент теплопроводности, Вт/м·К;
dн – наружный диаметр трубы с учётом изоляции, м;
dтр – наружный диаметр трубы, м.
λ = 0,045 + 0,021· tм, (4.2)
где tм – температура воды в трубопроводе, оС.
tм = tпр / 2, (4.3)
tм = 150/2 = 75 оС,
λ = 0,045 + 0,021· 75 = 0,06 Вт/м·К.
Толщина изоляции принимается равной 0,08 м.
Rи = (1/2·3,14· 0,06)· ln(0,354 /0,194) = 1,59 м·К/Вт.
Предварительно задаётся температура на поверхности изоляции
tн = 34,5 оС, и определяется коэффициент теплоотдачи:
α = 9,3 + 0,047· (tн – tо) + 7,0· √W, (4.4)
где tо – температура окружающей среды, оС;
W – скорость движения воздуха, для г. Саранска W =3,8 м/с.
α = 9,3 + 0,047· (34,5 +30) + 7,0· √3,8 = 26,0 Вт/м2 ·К.
Определяется термическое сопротивление трубопровода:
Rн = 1/ Π · αн· dн, (4.5)
Rн = 1/ 3,14· 26,0 · 0,194 = 0,063 м·К/Вт.
Уточняется температура на поверхности изоляции:
tн' = ( tпр / Rи– tо/ Rн) / (1/ Rи +1/ Rн), (4.6)
tн' = ( 150 / 1,59+30/ 0,063) / (1/ 1,59 +1/ 0,063) = 34,5 оС.
Определяются линейные потери теплоты:
Qл = l· ( tн – tо) / ( Rн + Rн), (4.7)
Qл = 90 · ( 150+30) / ( 1,59+0,063) = 9800,4 Вт.
Аналогичный расчёт проводится для обратного трубопровода.
Определяется термическое сопротивление слоя изоляции по формуле:
Rи = (1/2·π)·λ· ln(dн /dтр), (4.8)
где λ – коэффициент теплопроводности, Вт/м·К;
dн – наружный диаметр трубы с учётом изоляции, м;
dтр – наружный диаметр трубы, м.
λ = 0,045 + 0,021· tм, (4.9)
где tм – температура воды в трубопроводе, оС.
tм = tпр / 2, (4.10)
tм = 70 / 2 = 35 оС,
λ = 0,045 + 0,021· 35 = 0,05 Вт/м·К.
Толщина изоляции принимается равной 0,08 м.
Rи = (1/2·3,14· 0,05)· ln(0,354 /0,194) = 1,9 м·К/Вт.
Предварительно задаётся температура на поверхности изоляции tн = 34 оС, и определяется коэффициент теплоотдачи:
α = 9,3 + 0,047· (tн – tо) + 7,0 · √W, (4.11)
где tо – температура окружающей среды, оС;
W – скорость движения воздуха, для г. Саранска W=3,8 м/с.
α = 9,3 + 0,047· (34 + 30) + 7,0 · √3,8 = 25,95 Вт/м2 ·К.
Определяется термическое сопротивление трубопровода:
Rн = 1/ Π · αн· dн, (4.12)
Rн = 1/ 3,14· 25,95· 0,194 = 0,063 м·К/Вт.
Уточняется температура на поверхности изоляции:
tн' = ( tпр / Rи– tо/ Rн) / (1/ Rи +1/ Rн), (4.13)
tн' = ( 70 / 1,9+30/ 0,063) / (1/ 1,9 +1/ 0,063) = 33,8 оС.
Определяются линейные потери теплоты:
Qл = l · ( tн – tо) / ( Rн + Rн), (4.14)
Qл = 90 · ( 70+30) / ( 1, 9+0,063) = 4584,8 Вт.
Тепловой расчёт остальных участков тепловой сети производится аналогично, результаты расчёта заносятся в таблицу 4.
Общие тепловые потери сети определяются по формуле:
Q∑ = Qл + Qм = Qл (1+ β), (4.15)
где β = 0,15[1].
Для прямой магистрали:
Q∑ = (9800,4 + 600 + 1006,9 + 1006,9 + 977,3 + 2443,4 + 2391,6 + 5178,5 +5600 + 2265,7) · (1+0,15) = 35961,3 Вт.
Для обратной магистрали:
Q∑ = (4584,8 + 272,7 + 468,7 + 468,7 + 459,7 + 1149,4 + 1137,7 + 2371,5 + 2545,5 + 1054,7) · (1 + 0,15) = 16690,4 Вт.
Таблица 4.
Результаты теплового расчёта
№ участка | Dн, мм | Трубопроводы | |||||||
Прямой | Обратный | ||||||||
Rи, м·К/Вт | Rн, м·К/Вт | tн, оС | Qл, Вт | Rи, м·К/Вт | Rн, м·К/Вт | tн, оС | Qл, Вт | ||
1 | 194 | 1,59 | 0,063 | 34,5 | 9800,4 | 1,9 | 0,063 | 34 | 4584,8 |
2 | 57 | 3,50 | 0,100 | 33,0 | 600,0 | 4,3 | 0,100 | 33 | 272,70 |
3 | 45 | 4,02 | 0,270 | 37,0 | 1006,9 | 4,85 | 0,270 | 36 | 468,70 |
4 | 45 | 4,02 | 0,270 | 37,0 | 1006,9 | 4,85 | 0,270 | 36 | 468,70 |
5 | 38 | 4,40 | 0,320 | 38,0 | 977,3 | 4,9 | 0,320 | 37 | 459,70 |
6 | 38 | 4,40 | 0,320 | 38,0 | 2443,4 | 4,9 | 0,320 | 37 | 1149,4 |
7 | 89 | 2,72 | 0,140 | 35,0 | 2391,6 | 3,2 | 0,140 | 35 | 1137,7 |
8 | 159 | 1,80 | 0,077 | 35,0 | 5178,5 | 2,2 | 0,077 | 34 | 2371,5 |
9 | 57 | 3,50 | 0,100 | 33,0 | 5600,0 | 4,3 | 0,100 | 33 | 2545,5 |
10 | 45 | 4,02 | 0,270 | 37,0 | 2265,7 | 4,85 | 0,270 | 36 | 1054,7 |
0 комментариев