1. Описание устройства проектируемой лампы

Рассмотрим устройство проектируемой лампы на примере лампы накаливания общего назначения.

Главной частью любой ЛН является тело накала (1) (рис.1). Нагревание тела накала (ТН) производят пропускание через него электрического тока, что приводит к излучению света. ТН может быть выполнено из нити, спирали, биспирали, триспирали и иметь различные формы и размеры. Для того, чтобы ТН в процессе работы сохраняло исходную форму его фиксируют в пространстве с помощью внутренних звеньев электродов (2) и держателей (3). Необходимо отметить, что при конструировании тела накала важнейшими являются вопросы монтажа на ножке лампы. Выбор конструкции монтажа может повлиять на конструкцию самой спирали, т.е. может потребовать заранее предусмотренных пропусков спирали, называемых «тире». Ниже на рис.2 приведены наиболее распространенные типы монтажа.

В зависимости от типа лампы электроды могут быть одно- двух- и трехзвенными. Внутреннее звено изготовляется из никеля, ферроникеля, меди или платинита. Среднее звено может быть изготовлено из платинита или молибдена. Внешнее звено изготовляется из меди, платинита. Если внешнее звено выполняет роль плавкой вставки, то оно изготавливается из ферроникеля.

Рис.2. Наиболее распространенные типы монтажа.

Электроды и держатели являются частью ножки. Ножка - стеклянный конструктивный узел лампы который кроме электродов включает в себя стеклянный цельной или пустотелый штабик (5) с линзочкой (4), стеклянный пустотелый штенгель (8) и стеклянную трубку тарелку (9) имеющую в нижней части развертку. Эти детали соединены между собой путем сплавления стеклянных элементов в зоне лопатки (6). Ножкой служит опорой для ТН и вместе с колбой обеспечивает герметичность лампы. Для удобства эксплуатации на горловину с помощью мастики укрепляется цоколь (11).

Металлический корпус (1), который служит для установки лампы в патроне, обеспечения электрических контактов между сетью (упругим контактом патрона) и электродами лампы (в большинстве ламп его привариваются или припаивают к корпусу), нанесение маркировки на рант и соединение цоколя с горлом лампы посредством цоколевочной мастики. Металлические контактные пластины (2) служащие для осуществления электрического контакта между сетью (упругими контактами патрона) и другими электродами лампы, которые привариваются или припаиваются к пластине. Стеклянный или керамический изолятор (3), обеспечивающий механическое соединение корпуса с контактными пластинами и электрически изолирующий их друг от друга.


2. Расчет тела накала

При выборе и определении исходных данных необходимо учитывать следующее.

При Рл<25 Вт (U>130В) тело накала – спираль, а лампа вакуумная (В); если Рл>200 Вт (U>130 В), то ЛН, как правило, со спиральным телом накала, а наполнение – технический аргон (Г); в тех случаях, когда 40 Вт < P < 200 Вт, то лампы биспиральные наполненные техническим аргоном (Б) или техническим криптоном (БК).

В нашем случае (Рл = 80 Вт, U = 220 В), тело накала – спираль, лампа вакумная.

Опыт серийного производства показывает, что коэффициент шага (kш) и сердечника (kс) обычно находится в пределах kш = 1,3 - 1,7; kс = 3 – 6 (kш, kс – соответственно, коэффициенты шага и сердечника спирали). Коэффициент шага стремятся сделать меньше, а сердечника - больше, так как при этом тело накала компактнее, а потери через газ - меньше.

Выбираем спиральную вакуумную лампу. При этом потери через газ будут равны kГ = 0.

Ток лампы найдется из выражения:

Коэффициент шага kШ = 1,4. Коэффициент сердечника kС = 4,0.

Коэффициент излучения есть функция коэффициента шага. По табл.1 принимаем d = 0.74

Таблица 1.

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00
d 0.50 0.60 0.66 0.70 0.74 0.77 0.79 0.80 0.82 0.84 0.85

Коэффициент видимого излучения для спирали определяется по формуле dВ.СП = d × h, h = f(kШ). Зависимость представлена на рисунке 3.

Рис.3. Зависимость h от kШ.

Из рисунка 3 видно, что h = 0.934. Тогда

dВ.СП = d × h = 0.74 × 0.934 = 0.69.

Световая отдача лампы найдется из выражения:

Задаем также коэффициент экранирования светового потока цоколем aЦ =1,03; коэффициент охлаждающего действия электродов и крючков aД =1,03; коэффициент охлаждающего действия поддержек при I=const =1,015;

Рассмотрение внутреннего и внешнего баланса энергии ламп накаливания, у которых охлаждающее действие поддержек не перекрывается, позволило установить, что


где ,  - удельное сопротивление и энергетическая светимость вольфрама при температуре Т; k - относительные потери через газ; Нл, Нпр - световые отдачи лампы и прямой нить (в вакууме); ,  - общие коэффициенты излучения и излучения по световому потоку ТН; I, U - ток лампы и напряжение на ней;  - коэффициент, учитывающий уменьшение мощности за счет охлаждающего действия поддержек при I=const (для ЛОН =1,01 - 1,02);  - коэффициент, характеризующий экранирующее действие цоколя ( = 1,03 - 1,08);  - коэффициент, определяющий потери светового потока ТН из-за охлаждающего действия поддержек,  = 1 + (0,004 - 0,008)nд, где nд - количество поддерживающих ТН электродов и крючков; для ЛОН  = 1,03 - 1,05.

Рассчитываем световую отдачу прямой нити в вакууме:

Температура ТН однозначно связана с НПР, а rТ = f(T) и MeT = f(T) представлены в табл. 2.

Таблица 2.

T, K r*10-6 ,Ом×см Мет, Вт/см2 Нпр, Лм/Вт
2200 63.48 38.2 5.6
2300 66.91 47.2 7.3
2400 70.39 57.7 9.5
2500 73.91 69.8 11.8
2600 77.49 83.8 14.4
2700 81.04 99.6 17.8
2800 84.7 117.6 20.7
2900 88.33 137.8 23.9
3000 92.04 160.5 27.5
3100 96.04 187.5 31
3200 99.54 214 34.6

При НПР= 9,949 лм/Вт температура ТН равна 2427,6 К, энергетическая светимость МеТ = 61 Вт/см2, а удельное сопротивление rТ = 71,36×10-6 Ом×см.

Рассчитываем диаметр (d) и длину (l) нити:

Далее найдем геометрические параметры ТН по формулам:

Уточнение параметров ТН рассчитанной лампы производится путем графического определения рабочей температуры ТН (ТР) по пересечению рассчитываемых

РЛ = bU2 / rT = f(T) и Фе = f(T)


Для этого построим зависимости мощности лампы и энергетического потока от температуры тела накала. Расчет кривых проводим с помощью программы предназначенной для расчета ламп накаливания. Значения приведены в табл.3.

Таблица 3.

Т, К Фе, Вт РГ, Вт РЛ, Вт Фе+РГ, Вт
2200 50,1 0 89,9 50,1
2300 62 0 85,2 62
2400 75,9 0 80,9 75,9
2500 91,9 0 77 91,9
2600 110,4 0 73,4 110,4
2700 131,3 0 70,1 131,3
2800 155,1 0 67,0 155,1
2900 181,9 0 64,2 181,9
3000 212,0 0 61,6 212,0
3100 249,7 0 58,6 249,7
3200 285,4 0 56,3 285,4

По данным табл.3 построим кривые зависимостей РЛ=f(T) и Фе=f(T) (рис.4).

Определим точно значение температуры.

ТР = 2425,4 К.

Сопротивление нагретого ТН найдется из выражения:

b - коэффициент, учитывающий охлаждающее действие выбранного после предварительного расчета тело накала количества держателей:


где nД - количество электродов и крючков, Q1 - табулированная функция (Q1=0,00295) , d - диаметр нити, d - коэффициент излучения.

Находим уточненную мощность лампы:

Уточненный световой поток лампы найдется из формулы:

где LT - яркость по нормали к поверхности вольфрама (LT = 184,3 кд/см2, берется из таблицы).

Далее находим уточненную световую отдачу:

Далее проводится уточнение диаметра и длины нити тела накала по следующим формулам:


nr = 1,19, nM = 4,75, nL = 10,91 - берется из таблицы.


Далее пересчитываем геометрические размеры тела накала по формулам:

Информация о работе «Конструкция теплового источника оптического излучения»
Раздел: Промышленность, производство
Количество знаков с пробелами: 39744
Количество таблиц: 5
Количество изображений: 11

Похожие работы

Скачать
30079
0
9

... струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения. 1. Источники излучения   1.1 Типы источников излучения. Принципы их классификации Источником оптического излучения называют устройство, преобразующее любой вид энергии в энергию электромагнитных излучений оптического диапазона спектра. В светотехнике за ...

Скачать
73795
1
38

... (в первую очередь излучателя) и волокна. Оптимизация ввода излучения в волокно (рис. 10) может дать выигрыш по мощности до 10 дБ. Объединение элементов в систему. Волоконно-оптическая связь с момента своего появления основывается на принципах передачи цифровой информации. Это обусловлено тремя основными причинами. Во-первых, появление ВОЛС совпало со временем,, когда преимущества цифровых ...

Скачать
26062
9
10

... . Физическая среда – это может быть как атмосфера, так и оптический кабель. 9. Какие виды мультиплексирования применяются в оптических системах передачи? Ответ: В оптических системах передачи основное применение получили цифровые мультиплексоры, т.к. образуемые ими групповые сигналы представлены в двоичном коде, который придаёт высокую помехоустойчивость передаваемой информации. Широкое ...

Скачать
47232
2
0

... возможного риска и безопасности пациентов, облучаемых в соответствующих кабинетах, подразделениях организаций здравоохранения и др. Санитарные нормы не используются и при оценке источников ультрафиолетового излучения, используемых в некоторых отраслях сельского хозяйства, на что указывают п. 5 и 6 СН 2.2.4.13-45-2005. Санитарные нормы предназначены не только для организаций, осуществляющих ...

0 комментариев


Наверх