1.2 Метод ортогоналізації у випадку несиметричної матриці
У випадку несиметричної матриці процес ортогоналізації проводиться точно також. Нехай вектори вже побудовані. Тоді шукається у вигляді
(29)
Коефіцієнти визначаються із системи
(30)
Система у випадку несиметричної матриці буде трикутною.
Аналогічно будується система «біортогональних» векторів, тобто система 2n векторів, що задовольняють умові (12). При цьому – n довільних лінійно незалежних векторів, а вектори будуються послідовно у вигляді
(31)
Коефіцієнти перебувають із системи
(32)
Також надходимо, відшукуючи коефіцієнти й , при побудові систем векторів (14) і (15), що задовольняють умовам (16).
При цьому одержимо дві системи:
(33)
з яких і визначаємо й .
Зупинимося ще на одному методі ортогоналізації. Будемо розглядати рядки матриці А як вектори:
(34)
Перше рівняння системи ділимо на . При цьому одержимо
(35)
де
(36)
Друге рівняння системи заміниться на
(37)
де
(38)
Аналогічно надходимо далі. Рівняння з номером i прийме вид
(39)
де
(40)
Процес буде здійсненний, якщо система рівнянь лінійно незалежна. У результаті ми прийдемо до нової системи , де матриця З буде ортогональної, тобто має властивість СС¢=I.
Таким чином, рішення системи можна записати у вигляді
. (41)
Практично, внаслідок помилок округлення, СС¢ буде відмінна від одиничної матриці й може виявитися доцільним зробити кілька ітерацій для системи .
2. Метод сполучених градієнтів
2.1 Перший алгоритм методу
Нехай потрібно вирішити систему лінійних алгебраїчних рівнянь
(1)
с позитивно певною матрицею A порядку n.
Розглянемо функціонала
, (2)
багаточлен, що представляє, другого порядку відносно x1, x2…, xn,… Позначимо через рішення системи (1), тобто . У силу симетричності й позитивної визначеності матриці, маємо:
При цьому знак рівності можливий лише при . Таким чином, задача рішення рівняння (1) зводиться до задачі відшукання вектора , що обертає в мінімум функціонал (2).
Для відшукання такого вектора застосуємо наступний метод.
Нехай – довільний початковий вектор, а
(4)
– вектор не в'язань системи. Покажемо, що вектор не в'язань має напрямок нормалі до поверхні в крапці . Справді, напрямок нормалі збігається з напрямком найшвидшої зміни функції в крапці . Це напрямок ми знайдемо, якщо знайдемо серед векторів , для яких , такий вектор, що
має найбільше значення. Але
Але серед векторів постійний довжини досягає максимального значення, якщо має напрямок вектора або йому протилежне. Твердження доведене. Будемо рухатися із крапки в напрямку вектора доти, поки функція досягає мінімального значення. Це буде при , тобто при
. (5)
Вектор
(6)
і приймаємо за нове наближення до рішення.
У методі сполучених градієнтів наступне наближення перебуває так. Через крапку проведемо гіперплощину (n-1) – го виміру
(7)
і через позначимо нове не в'язання системи
. (8)
Вектор спрямований по нормалі до поверхні в крапці , а вектор паралельний дотичної площини в цій крапці. Тому
. (9)
Гіперплощина (7) проходить через крапку , тому що
.
При кожному вектор паралельний деякої нормальної площини до поверхні в крапці . Знайдемо серед них той, котрий лежить у гіперплощині (7), тобто ортогональний к. З умови ортогональності маємо:
,
або
. (10)
Вектор
(11)
має напрямок нормалі до перетину поверхні гіперплощини (7) у крапці . Будемо рухатися із крапки в напрямку вектора доти, поки функція досягне мінімуму. Це буде при
. (12)
Вектор
приймемо за нове наближення до рішення системи. Вектор не в'язань
(13)
має напрямок нормалі до поверхні в крапці . Покажемо, що він буде ортогональний до і . Справді, використовуючи (9), (11), (12), (13), маємо:
Розглянемо гіперплощину (n-2) – х вимірів
, (14)
минаючу через крапку . Ця гіперплощина містить і , тому що ми раніше бачили, що , а
.
Вектор при кожному паралельний гіперплощини (7), тому що
.
Підберемо так, щоб він був паралельний і гіперплощини (14), тобто зажадаємо ортогональності до вектора . Будемо мати:
,
або
(15)
Вектор
(16)
буде мати напрямок нормалі до перетину поверхні гіперплощиною (14) у крапці . Із крапки змістимося в напрямку цього вектора так, щоб функція досягла мінімального значення. Це буде при
, (17)
(18)
приймемо за нове наближення к. Новий вектор не в'язань буде:
. (19)
Продовжуючи процес, одержимо послідовності векторів , , , обумовлені рекурентними співвідношеннями:
(20)
Для цих векторів мають місце наступні співвідношення:
(21)
(22)
Справді, у силу самої побудови при i (j
Далі, при i>j
Якщо i=j+1, то права частина дорівнює нулю, у силу визначення , якщо ж i>j+1, те, по доведеному, і
.
Продовжуючи зниження індексу у вектора , через кілька кроків прийдемо до скалярного добутку (по визначенню ). Таким чином, співвідношення (21) доведені. Для доказу (22), у силу рівноправності індексів i і j, припустимо, що i>j. Тоді
.
Тому що в n-мірному векторному простори не може бути більше n взаємно ортогональних векторів, то на деякому кроці одержимо , тобто буде рішенням системи (1).
На мал. 1 показана геометрична картина нашої побудови при n=3.
Мал. 1
0 комментариев