3. Предварительный подбор сечения ригеля
Подбор сечения ригеля покрытия:
Рис.1 Эпюра моментов в ригеле покрытия.
Ригель работает, как двухпролетная рама с жесткими узлами сопряжения. Находим изгибающие моменты:
(кН*м);
По максимальному моменту находим требуемый момент сопротивления: В – шаг рам
;
Принимаем марку стали для ригеля ВСт3ПС6-2 с расчетным сопротивлением R = 240 (МПа);
(м3);
По сортаменту подбираем двутавр балочного типа 35Б2;
Характеристики сечения
Параметр | Значение | ||
A | Площадь поперечного сечения | 55,17 | см2 |
Iy | Момент инерции относительно оси Y | 11549,999 | см4 |
iy | Радиус инерции относительно оси Y | 144,70 | см |
Wy | Момент сопротивления относительно оси Y | 662,2 | См |
Р | Масса погонного метра | 43,0 | кг/м |
1)Производим проверку по 2-ой группе предельных состояний:
,
где [f] – предельно допустимый прогиб; f – расчетный прогиб;
;
<2,4см
2)σ=156,56/0,66∙10-3=229,63<240∙103
Подбор сечения ригеля перекрытия:
Рис. Эпюра моментов в ригеле перекрытия.
Находим изгибающие моменты:
(кН*м);
По максимальному моменту находим требуемый момент сопротивления. Принимаем марку стали для ригеля ВСт3ПС6-2 с расчетным сопротивлением R = 240 (МПа);
(м3);
По сортаменту подбираем двутавр балочного типа 40Б1;
Характеристики сечения
Параметр | Значение | ||
A | Площадь поперечного сечения | 61,25 | см2 |
Iy | Момент инерции относительно оси Y | 15749,998 | см4 |
iy | Радиус инерции относительно оси Y | 160,3 | мм |
Wy | Момент сопротивления относительно оси Y | 803,6 | см3 |
Р | Масса погонного метра | 48 | кг |
1)Производим проверку по 2-ой группе предельных состояний:
<2,4см
2)σ=152,1/1,087*10-3=181,82*103<240*103
4.Предварительный подбор сечения колонны
I. Расчет на вертикальную нагрузку
4.1.1 Определяем вертикальную нагрузку, действующую на среднюю колонну III уровня:
Состав нагрузок | Нормативная нагрузка | Коэффиц. надёжности | Расчётная нагрузка | Грузовая площадь | Усилие |
Снеговая нагрузка | 1,8 | 36 | 64,8 | ||
Кровля | 1,25 | 1,554 | 36 | 55,944 | |
Плита покрытия (перекрытия) | 1,661 | 1,1 | 1,8271 | 216 | 394,6536 |
Покрытие пола | 0,65 | 0,82 | 216 | 177,12 | |
Ригели покрытия | 0,43 | 1,05 | 0,4515 | 6 | 2,709 |
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 18 | 9,072 |
Перегородки и внутренние стены | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
Временная нагрузка | 4 | 1,2 | 4,8 | 216 | 1036,8 |
Итого | 1822,358 |
Вертикальная нагрузка, действующая на среднюю колонну 3 уровня
,
где A – площадь поперечного сечения колонны;
φ – коэф. приведения гибкости, предварительно принимаемый 0,9.
N – вертикальная нагрузка;
R – расчетное сопротивление стали;
- коэффициент условия работы (1);
(м2);
По сортаменту принимаем двутавр колонного типа
26К3; (м2), (м4), iх=11,3см.
λ=l/ iх=3.6/0,11,3=49,4 =>φ=0,668
σ=<240кПа
4.1.2 Определяем вертикальную нагрузку, действующую на крайнюю колонну III уровня:
Вертикальная нагрузка, действующая на крайнюю колонну 3 уровня
Состав нагрузок | Нормативная нагрузка | Коэффиц. надёжности | Расчётная нагрузка | Грузовая площадь | Усилие |
Снеговая нагрузка | 1,8 | 18 | 32,4 | ||
Кровля | 1,25 | 1,554 | 18 | 27,972 | |
Плита покрытия (перекрытия) | 1,661 | 1,1 | 1,8271 | 108 | 197,3268 |
Покрытие пола | 0,65 | 0,82 | 108 | 88,56 | |
Ригели покрытия | 0,43 | 1,05 | 0,4515 | 3 | 1,3545 |
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 15 | 7,56 |
Перегородки и внутренние силы | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
Временная нагрузка | 4 | 1,2 | 4,8 | 108 | 518,4 |
Итого | 954,8325 |
(м2);
По сортаменту принимаем двутавр колонного типа
20К1; (м2), (м4), iх=8,5см.
λ=l/ iх=3,6/0,085=42,35 =>φ=0.862
σ=кПа<240Па
4.1.3 Определяем вертикальную нагрузку, действующую на среднюю колонну II уровня:
Вертикальная нагрузка, действующая на среднюю колонну 2 уровня
Состав нагрузок | Нормативная нагрузка | Коэффиц. надёжности | Расчётная нагрузка | Грузовая площадь | Усилие |
3 уровень | 1822,358 | ||||
Плита перекрытия | 1,661 | 1,1 | 1,8271 | 216 | 394,6536 |
Покрытие пола | 0,65 | 0,82 | 216 | 177,12 | |
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 18 | 9,072 |
Перегородки и внутренние стены | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
Колонна | 0,42 | 1,05 | 0,441 | 21,6 | 9,5256 |
Временная нагрузка | 4 | 1,2 | 4,8 | 216 | 1036,8 |
Итого | 3530,788 |
(м2);
По сортаменту принимаем двутавр колонного типа 23К1; (м2), (м4), iх=9,95см.
λ=l/ iх=3,6/0,0995=42,21 =>φ=0,859
σ=кПа<240*103кПа
4.1.4Определяем вертикальную нагрузку, действующую на крайнюю колонну II уровня:
Вертикальная нагрузка, действующая на крайнюю колонну 2 уровня
Состав нагрузок | Нормативная нагрузка | Коэффиц. надёжности | Расчётная нагрузка | Грузовая площадь | Усилие |
3 уровень | 954,8325 | ||||
Плита перекрытия | 1,661 | 1,1 | 1,8271 | 108 | 197,3268 |
Покрытие пола | 0,65 | 0,82 | 108 | 88,56 | |
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 15 | 7,56 |
Перегородки и внутренние стены | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
Колонна | 0,42 | 1,05 | 0,441 | 21,6 | 9,5256 |
Временная нагрузка | 4 | 1,2 | 4,8 | 108 | 518,4 |
Итого: | 1857,464 |
(м2);
По сортаменту принимаем двутавр колонного типа 26К3;
(м2), (м4), iх=11,3см.
λ=l/ iх=3,6/0,113=31,85 =>φ=0,668
σ=<240*103кПа
4.1.5 Определяем вертикальную нагрузку, действующую на среднюю колонну I уровня:
Вертикальная нагрузка, действующая на среднюю колонну 1 уровня
Состав нагрузок | Нормативная нагрузка | Коэффиц. надёжности | Расчётная нагрузка | Грузовая площадь | Усилие |
2 уровень | 3530,788 | ||||
Плита перекрытия | 1,661 | 1,1 | 1,8271 | 216 | 394,6536 |
Покрытие пола | 0,65 | 0,82 | 216 | 177,12 | |
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 18 | 9,072 |
Перегородки и внутренние стены | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
Колонна | 0,42 | 1,05 | 0,441 | 21,6 | 9,5256 |
Временная нагрузка | 4 | 1,2 | 4,8 | 216 | 1036,8 |
Итого: | 5239,219 |
(м2);
По сортаменту принимаем двутавр колонного типа 40К4;
(м2), (м4), iх=17,85см.
λ=l/ iх=3,6/0,1785=20,17=>φ=0,99
σ=<240Па
4.1.6 Определяем вертикальную нагрузку, действующую на крайнюю колонну I уровня:
Д |
| |||||||||||||||
Состав нагрузок | Нормативная нагрузка | Коффиц. Надёжности по нагрузке | Расчётная нагрузка | Грузовая площадь | Усилие | |||||||||||
2 уровень | 1857,464 |
| ||||||||||||||
Плита перекрытия | 1,661 | 1,1 | 1,8271 | 108 | 197,3268 |
| ||||||||||
Покрытие пола | 0,65 | 0,82 | 108 | 88,56 |
| |||||||||||
Ригели перекрытия | 0,48 | 1,05 | 0,504 | 15 | 7,56 |
| ||||||||||
Перегородки и внутренние стены | 1,5 | 1,1 | 1,65 | 49,248 | 81,2592 |
| ||||||||||
Колонна | 0,42 | 1,05 | 0,441 | 21,6 | 9,5256 |
| ||||||||||
Временная нагрузка | 4 | 1,2 | 4,8 | 108 | 518,4 |
| ||||||||||
Итого: | 2760,096 | |||||||||||||||
(м2);
По сортаменту принимаем двутавр колонного типа 35К2;
(м2), (м4), iх=15,2см.
λ=l/ iх=3,6/0,158=23,68 =>φ=0,91
σ=<240Па
Расчёт на горизонтальные нагрузки. Определение ветровой нагрузки
В связи с тем, что скорость ветра достаточно резко меняется, эта нагрузка воздействует динамически. Давление ветра на высоте 10 м над поверхностью земли в открытой местности, называемое скоростным напором ветра gо, зависит от района строительства. Ветровая нагрузка меняется по высоте, но в нормах принято, что до высоты 10м от поверхности земли скоростной напор не меняется. Он принят за нормативный, а увеличение его при большей высоте учитывается коэффициентами k, разными при разной высоте. Нормативный скоростной напор ветра w0 =0,23 кПа. Тип местности B. Определим нормативное значение средней составляющей ветровой нагрузки на высоте z:
,
где с – аэродинамический коэффициент, зависящий от расположения и конфигурации поверхности. Для вертикальных стен с=0,8 с наветренной стороны и с=-0,6 для откоса;
k – коэффициент, учитывающий изменение ветрового давления по высоте. Расчетная нагрузка, приходящаяся на часть здания по ширине
,
- коэффициент надежности по нагрузке, 1,4;
B – шаг рам, 6м.
Z,м | к | В,м | Wm | Wm(p) | ||
0,8 | 0,6 | 0,8 | 0,6 | |||
1,8 | 0,65 | 6 | 0,156 | 0,117 | 1,3104 | 0,9828 |
5,4 | 0,65 | 6 | 0,156 | 0,117 | 1,3104 | 0,9828 |
9 | 0,65 | 6 | 0,156 | 0,117 | 1,3104 | 0,9828 |
12,6 | 0,66 | 6 | 0,1584 | 0,1188 | 1,33056 | 0,99792 |
16,2 | 0,74 | 6 | 0,1776 | 0,1332 | 1,49184 | 1,11888 |
19,8 | 0,83 | 6 | 0,1992 | 0,1494 | 1,67328 | 1,25496 |
23,4 | 0,89 | 6 | 0,2136 | 0,1602 | 1,79424 | 1,34568 |
27 | 0,94 | 6 | 0,2256 | 0,1692 | 1,89504 | 1,42128 |
30,6 | 0,99 | 6 | 0,2376 | 0,1782 | 1,99584 | 1,49688 |
34,2 | 1,046 | 6 | 0,25104 | 0,18828 | 2,108736 | 1,581552 |
37,8 | 1,099 | 6 | 0,26376 | 0,19782 | 2,215584 | 1,661688 |
41,4 | 1,14 | 6 | 0,2736 | 0,2052 | 2,29824 | 1,72368 |
45 | 1,183 | 6 | 0,28392 | 0,21294 | 2,384928 | 1,788696 |
48,6 | 1,19 | 6 | 0,2856 | 0,2142 | 2,39904 | 1,79928 |
52,2 | 1,2 | 6 | 0,288 | 0,216 | 2,4192 | 1,8144 |
55,8 | 1,21 | 6 | 0,2904 | 0,2178 | 2,43936 | 1,82952 |
59,4 | 1,22 | 6 | 0,2928 | 0,2196 | 2,45952 | 1,84464 |
63 | 1,25 | 6 | 0,3 | 0,225 | 2,52 | 1,89 |
Определим сосредоточенные силы:
Р1= (1,31+1,31)∙1,8+(0,98+0,98)∙1,8=8,26кН
Р2=(1,31+1,31)∙1,8+(0,98+098)∙1,8=8,26кН
Р3=(1,31+1,33)∙1,8+(0,98+0,99)∙1,8=8,31кН
Р4=(1,33+1,49)∙1,8+(0,99+1,11)∙1,8=8,89кН
Р5=(1,49+1,67)∙1,8+(1,11+1,25)∙1,8=9,97кН
Р6=(1,67+1,79)∙1,8+(1,25+1,34)∙1,8=10,92кН
Р7=(1,79+1,89)∙1,8+(1,34+1,42)∙1,8=11,62кН
Р8=(1,89+1,99)∙1,8+(1,42+1,49)∙1,8=12,26кН
Р9=(1,99+2,1)∙1,8+(1,49+1,58)∙1,8=12,93 кН
Р10=(2,1+2,22)∙1,8+(1,58+1,66)∙1,8=13,62 кН
Р11=(2,22+2,29)∙1,8+(1,66+1,72)∙1,8=14,21 кН
Р12=(2,29+2,38)∙1,8+(1,72+1,79)∙1,8=14,75 кН
Р13=(2,38+2,39)∙1,8+(1,79+1,799)∙1,8=15,07 кН
Р14=(2,39+2,41)∙1,8+(1,799+1,8)∙1,8=15,18 кН
Р15=(2,41+2,43)∙1,8+(1,81+1,83)∙1,8=15,3 кН
Р16=(2,43+2,46)∙1,8+(1,83+1,84)∙1,8=15,43 кН
Р17=(2,46+2,52)∙1,8+(1,84+1,89)∙1,8=15,68 кН
Р18=2,52∙1,8+1,89∙1,8=7,94 кН
расчет на горизонтальную нагрузку
ΣРIII=7,94+15,68+15,43+15,30+15,177+15,07=84,61 (кН).
ΣРII=14,75+14,21+13,62+12,93+12,25+11,62=79,39 (кН).
ΣРI=10,92 +9,97+8,89+8,32+8,25+8,25=54,61 (кН).
Рис. Схема действия нагрузок
Фактические изгибающие моменты:
,
где MЖ – момент в жестком узле;
MШ – момент в шарнирном узле;
- сумма нагрузок уровня;
hЭТ – высота уровня;
4– количество колонн;
K – коэффициент, определяющий жесткость узла.
; ,
,
где - момент инерции ригеля; - момент инерции колонны; - длина колонны; - длина ригеля;
III уровень крайняя колонна:
W=815,1/240*103=0,000625м3
По сортаменту принимаем двутавр колонного типа 23К2;
(м2), (м4), iх=10см.
σ=M/W=15,1/0,00661=2,28*103<240*103Па
II уровень средняя колонна:
W=39,59/240*103=0,000164м3
По сортаменту принимаем двутавр колонного типа 20К1;
(м2), (м4), iх=8,5см.
σ=M/W=39,59/0,00528=7,5*103кПа<240*103кПа
I уровень крайняя колонна:
W=10,01/240*103=0,000041м3
По сортаменту принимаем двутавр колонного типа 20К1;
(м2), (м4), iх=8,5см.
σ=M/W=10,01/0,00528=1,9*103кПа<240*103кПа
Вывод: был произведен расчёт колонн на вертикальные и горизонтальные нагрузки и подобранны номера двутавров типа колонные для обоих вариантов. Из сравнительного анализа видно, что для проектирования необходимо взять колонны сечением из расчёта на вертикальные нагрузки.
Таблица 3 Номера колонн и их изгибная жесткость
Уровень | Крайняя колонна | Средняя колонна |
I | 35К2: А=160∙10-4м2 W=2132∙10-6м3 | 40К4: А=308,6∙10-4м2 J=98340∙10-8м4 W=4694∙10-6м3 |
II | 26К3: А=105,9∙10-4м2 J=13559,99∙10-8м4 W=1035∙10-6м3 | 35К3: А=184,1∙10-4м2 J=42969,99∙10-8м4 W=2435∙10-6м3 |
III | 20К1: А=52,8∙10-4м2 J=3820∙10-8м2 W=392∙10-6м3 | 26К1: А=83,08∙10-4м2 J=10299,99∙10-8м4 W=809∙10-6м3 |
... 1997 1998 1999 Себистоимость 2 222 222 2 188 537 2 139 787 5.3. Цена. Придерживаясь общей методике расчёта цены, при её определении будем следовать следующему плану: 1. Постановка задачи ценообразования; 2. Определение спроса; 3. Прогноз издержек; 4. Анализ цен и товаров конкурентов; 5. Выбор метода ценообразования; 6. Установление окончательной цены. Нашей задаче будет ...
ет. Чтобы построить аналогичное нашему предприятие и запустить его в эксплуатацию нужно, по крайней мере, 8 - 10 лет. Но так как город Калининград не большой и наша фирма "СТРОЙИНДУСТРИЯ" практически может сама полностью удовлетворять потребности потребителей, то строительство новых предприятий не выгодно, так как ведёт за собой большие издержки, не считая того, что вновь образовавшейся фирме ...
... динамики роста продаж обусловлено изученной динамикой производства в отдельных подотраслях промышленности строительных материалов (по данным Госкомстата) в настоящее время и маркетинговыми исследованиями потребительского спроса конкурирующих предприятий в данной сфере деятельности г. Южно-Сахалинска в 3-х летнем периоде. Рассмотрим планирование денежных потоков предприятия в процессе оценки ...
... преимущественно в зданиях с регулярной планировочной структурой (гостиницы, общежития, пансионаты и т.п.), совмещая шаг поперечных перегородок и шаг несущих конструкций. Каркас с продольным расположением ригелей применяют, проектируя общественные здания сложной планировочной структуры (школы, лечебно – профилактические учреждения и др.). Комбинированная система (с неполным каркасом). В таких ...
0 комментариев