1. АНАЛИЗ ОСНОВНЫХ ТРЕБОВАНИЙ И ПОСТАНОВКА ЗАДАЧ ПРОЕКТИРОВАНИЯ

1.1 Расчеты основных параметров электромеханической системы привода

В данном курсовом проекте разрабатывается привод подач токарного станка. Для перемещения по координате предусмотрен свой привод. Поэтому разработку производим для одного контура управления. Применение ЦСУ позволяет значительно повысить точность и качество обработки, упростить кинематику привода подач, избежать применения многоступенчатого редуктора, повысить технологические возможности станка. Кинематическая схема привода подач изображена на рисунке 1.1. Вращательное движение от электродвигателя через одноступенчатый редуктор Р передается на ходовой винт. Через передачу винт-гайка вращательное движение преобразуется в поступательное движение суппорта С. На ходовом винте установлен кодовый датчик (КОД) положения, позволяющий контролировать также частоту вращения винта путем цифрового дифференцирования.

Рисунок 1.1 - Кинематическая схема привода

Такая система обеспечивает глубокое регулирование скорости и высокоточный контроль перемещения стола по координате.

Станок токарный предназначен выполнять токарную обработку деталей и нарезку резьбы на телах вращения (валы, диски и т.д.) из стали.

По согласованию с изготовителем станок оснащается суппортом с одним плоским резцедержателем, накладным отрезным резцедержателем или четырёх позиционной головкой с вертикальной осью вращения.

Область применения станка – различные отрасли промышленности.

Связав технические характеристики с параметрами, указанными в задании, произведём расчет и выбор электродвигателя привода подачи суппорта станка.

Мощность, затрачиваемая на рабочей подаче с учетом всех сил:

, (1.1)

где VП=17 м/мин – максимальная скорость подачи;

, (1.2)

где FП =7 кН – сила подачи, FТ.Н.– сила трения в направляющих;

 (1.3)

 (1.4)

 (1.5)

Тогда требуемая мощность определится:

, (1.6)

где h-К.П.Д. двигателя, h=0.9;

Исходя из расчётов необходимой мощности, предварительно выбираем электродвигатель типа ПБВ-132L. Характеристики ЭД типа ПБВ-132L представлены в таблице 1.1.

Таблица 1.1 - Характеристики ЭД типа ПБВ-112

Номинальный момент, Н×м

47,7
Номинальная скорость, об/мин 600
Номинальная мощность, кВт 3,0
Номинальное напряжение, В 70
Номинальный ток, А 50
Максимальный момент, Н×м 470
Максимальная скорость, об/мин 2000

Момент инерции якоря, кг-м2*

Максимальное ускорение, с-2

1970
Электромеханическая постоянная, мс 12,3
Электромагнитная пост., мс 7,85

Из ряда типовых размеров винтов выбираем винт со следующими параметрами (см. Таблица 1.2)

Таблица 1.2 – Размер винта

Диаметр винта Dв, мм

Диаметр шарика d, мм

Шаг винта , мм

Общее количество витков в двух гайках Грузоподъемность, кН

Осевая податливость еx-9,м/Н

статическая Qст

динамическая Qд

80  6 10 6 100 25 0,528

Осуществляем проверку правильности выбора ЭД путем расчетов работы в статическом и динамическом режимах.

В статическом режиме работы статический момент сопротивления [2]:

, (1.7)


где МП – момент сопротивления от усилия подачи на рабочем ходу, Н×м;

МТВ – момент трения в кинематических парах (подшипниках) ходового винта, Н×м;

МТН – момент сил трения в направляющих, Н×м.

 (1.8)

,

где  – передаточное отношение редуктора, определяемое из соотношения

, (1.9)

где wВМАХ – максимальная скорость вращения винта, с-1;

. (1.10)

Таким образом:

Определим момент трения винта:

; (1.11)

 (Н∙м).

Двигатель обеспечивает длительную работу под нагрузкой, т.к. МСТДВ

(1.507 Н×м < 47.7 Н×м).

Проверить двигатель в динамическом режиме.

, (1.12)

где JПР – приведенный момент инерции механизма привода подач станка, кг×м2;

eДОП – максимально допустимое угловое ускорение двигателя на рабочем ходу, с-2.

Определим eДОП из условия:  (1.13)

 (1.14)

где аДОП – допустимое ускорение при разгоне, аДОП=1.3 м/с2.

, (1.15)

где  – техническая характеристика двигателя;

JДВ – момент инерции двигателя, JДВ=0,238 кг×м2.

, (1.16)

 (кг×м2); (1.17)

 (кг×м2). (1.18)

Таким образом, динамический момент сопротивления:

 (Н∙м) (1.19)

Максимальный динамический момент, который может обеспечить двигатель, равен:

 (Н×м). (1.20)

 (102.621 < 470).

В статическом и динамическом режиме двигатель обеспечивает необходимый момент для преодоления сил сопротивления, следовательно, выбор сделан правильно.

1.2 Расчет основных параметров системы управления

Одной из основных характеристик системы управления является период дискретности . Для систем с астатизмом первого порядка период дискретности определяется допустимой величиной скоростной ошибки  и допускаемым ускорением :

 (с). (1.21)


Однако расчет  по этой формуле гарантирует соблюдение лишь одного условия – траектория ускоренного движения рабочего органа за время  не отклонится от заданной траектории больше, чем на величину .

Следует учесть, что при проектировании привода необходимо обеспечить устойчивость и требуемую полосу частотного диапазона. Эти параметры зависят от периода дискретности , величина которого определяет форму частотной характеристики в высокочастотном диапазоне. Поэтому необходимо сначала построить желаемую частотную характеристику системы, а затем определить период дискретности.

На рисунке 1.2 изображена желаемая логарифмическая амплитудно-частотная характеристика (ЛАЧХ), форма которой позволяет:

·  устранить позиционную ошибку – первая асимптота имеет наклон к оси частот 20 дБ/дек;

·  ограничить скоростную ошибку – первая асимптота должна занять определенное положение на оси относительной амплитуды ;

·  обеспечить устойчивую работу привода – ЛАЧХ имеет асимптоту, которая пересекает ось частот с наклоном 20 дБ/дек;

·  обеспечить требуемый частотный диапазон привода и показатель колебательности – должна быть обеспечена необходимая длина асимтоты в частотном диапазоне .

Рисунок 1.2 – желаемая форма ЛАЧХ цифрового электропривода

Желаемая ЛАЧХ описывается следующей дискретной частотной характеристики (ДЧХ):

, (1.22)

где ; ; ;  – основные параметры, определяемые требованиями к системе электропривода;

 – характеристика запаздывания, определяемая параметрами цифровой системы.

Для определения основных параметров ДЧХ необходимо преобразовать заданные параметры технологического процесса в эквивалентные параметры гармонического сигнала, которые позволяют определить положение критической точки  запретной области ЛАЧХ.

Преобразования параметров возможны в тех случаях, когда движения рабочих органов задаются в виде круговых траекторий. При развертке во времени одной из координат круговой траектории движения получим синусоиду:

, (1.23)

поверхности;  – угловая скорость (подача).

Первая и вторая производные (скорость и ускорение) гармонического сигнала определяются известными выражениями:


 (1.24)

где индексы  обозначают максимальные (допускаемые) значения.

Отсюда можно определить эквивалентные параметры гармонического воздействия – частоту и амплитуду:

, . (1.25)

Максимальная ошибка для дискретной системы определяется выражением:

, (1.26)

где  – дискретная частотная характеристика системы,  – псевдочастота.

Для низкочастотного участка ЛАЧХ справедливо допущение . Тогда:

. (1.27)

Если известно значение ошибки , то должно быть выполнено условие:

 (1.28)


Для относительной амплитуды  это условие запишется в следующем виде:

 (1.29)

В системах управления электроприводами значения максимальной скорости , допускаемого ускорения  и допускаемой скоростной ошибки  известны.

Тогда, учитывая условия преобразования, для обеспечения необходимой точности желаемая ЛАЧХ должна проходить выше критической точки  с координатами:

; (1.30)

. (1.31)

44.932 дБ

При этом запретная область ограничивается по относительной амплитуде первой асимптотой, которая проводится влево от точки  с наклоном -20 дБ/дек. По частоте эта запретная область ограничивается второй асимптотой, которая проводится вправо от точки  с наклоном -40 дБ/дек. Положение запретной зоны показано на рисунке 1.3.


Рисунок 1.3 – Построение запретной зоны по критериям точности

Скоростная ошибка  определяет необходимую добротность системы по скорости , которая определяется по формуле:

, (1.32)

Значение  соответствует точке пересечения линии, которая продолжает первую низкочастотную асимптоту, с осью .

После построения запретной области строятся логарифмические амплитудные и фазовые частотные характеристики. При построении следует придерживаться следующего порядка.

1.  Первая низкочастотная асимптота желаемой ЛАХ проводится с наклоном –20 дБ/дек выше точки  на 3 дБ, чтобы обеспечить запас устойчивости. Подъем характеристики приводит к увеличению коэффициента добротности по скорости в  раза:

. (1.33)


2.  Вторая асимптота проводится с наклоном –40 дБ/дек от точки сопряжения с координатами (; ) до точки пересечения с осью , которая определяет базовую частоту  запретной области:

. (1.34)

3.  По заданному показателю колебательности  определяется частота сопряжения второй и третьей асимптот:

. (1.35)

4.  Третья асимптота с наклоном –20 дБ/дек проводится от точки  до точки , которая определяется из условия обеспечения требуемого показателя колебательности:

. (1.36)

 вычисляется по соотношению:

. (1.37)

5.  Строится график  запретной области фазовой частотной характеристики:


. (1.38)

где  – частота среза, которая определяется по формуле:

. (1.39)

6.  Строится график фазовой частотной характеристики :

. (1.40)

где  – показатель эквивалентного запаздывания, значение которого принимается равным 1.

На рисунке 1.4 показано положение запретной области  и фазовой частотной характеристики .

Рисунок 1.4 – Построение запретной области для фазовой характеристики


Построенные графики позволяют сделать вывод о запасе устойчивости системы управления по фазе. Фазовая характеристика не должна заходить в запретную область, для которой относительная логарифмическая амплитуда находится в пределах:

. (1.41)

 (1.42)

 

Если же это условие не выполняется, то желаемый результат можно получить путем изменения частот сопряжения  и, а также коэффициента .

В верхнем диапазоне частота  определяет период дискретности  в соответствии с выражением:

. (1.43)

Это значение и должно быть принято в последующих расчетах.

 



Информация о работе «Разработка цифрового электропривода продольной подачи токарно-винторезного станка»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 46364
Количество таблиц: 3
Количество изображений: 24

Похожие работы

Скачать
25876
10
3

... Данный ТП имеет некоторые недостатки: 1 Нерациональность выбора заготовки; 2 Нерациональность выбора оборудования, используются устаревшие модели станков, которые не могут высокопроизводительно изготовить деталь и увиливают время на ее изготовление. 3 Неприменимость высокопроизводительных методов обработки. Их можно устранить, заменив оборудование в 015; 020; 030; 040 и 045 операциях на более ...

Скачать
33020
2
9

... И точностью отсчета – 0,1мм. Штангенглубиномер ШГ ГОСТ 162-80 с пределами измерений о-250мм. И точностью отсчета – 0,05мм. 2.3 Нормирование технологической операции Основными элементами режима фрезерования являются: глубина сверления t,мм.: подача S, мм/об.: скорость сверления V м/мин.: частота вращения n, об/мин: сила сверления Pz,кгс: потребная мощность Nnom, кВт. Выбранный режим сверления ...

0 комментариев


Наверх