4.4 Описание микросхемы UC3843
Интегральная схема (ИС) UC3843 выпускается в корпусах SOIC-8 и SOIC-14, но в подавляющем большинстве случаев встречается ее модификация в корпусе DIP-8. На рисунке 4.3 представлена цоколевка.
Микросхема UC3843 предназначена для построения на ее основе стабилизированных импульсных источников питания (ИП) с широтно-импульсной модуляцией (ШИМ). Поскольку мощность выходного каскада ИС сравнительно невелика, а амплитуда выходного сигнала может достигать напряжения питания микросхемы, то в качестве ключа совместно с этой ИС применяется n-канальный МОП транзистор.
Рисунок 4.3 – Цоколевка микросхемы UC3842
Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса [7].
Comp (1) – этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.
Vfb (2) – вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.
C/S (3) – сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.
Rt/Ct (4) – вывод, предназначенный для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу - мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току.
Gnd (5) – общий вывод.
Out (6) – выход ИС, подключается к затвору КТ через резистор.
Vcc (7) – вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием.
Vref (8) – выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.
Источник образцового напряжения используется для подключения к нему одного из плеч резистивного делителя, предназначенного для оперативной регулировки выходного напряжения ИП, а также для подключения времязадающего резистора.
ИС имеет некоторые особенности, связанные с ее питанием. Рассмотрим их подробнее. В первый момент после включения ИП в сеть внутренний генератор ИС еще не работает, и в этом режиме она потребляет от цепей питания очень маленький ток. Для питания ИС, находящейся в этом режиме, достаточно напряжения, получаемого с резистора R2 и накопленного на конденсаторе C5. Когда напряжение на этих конденсаторе достигает значения 7.8…9 В, запускается генератор ИС, и она начинает формировать на выходе импульсы управления КТ. На вторичных обмотках трансформатора ТV1, в том числе и на обмотке 3-4, появляется напряжение. Это напряжение выпрямляется импульсным диодом VD4, фильтруется конденсатором C4, и через диод VD5 подается в цепь питания ИС. В цепь питания включается стабилитрон VD6, ограничивающий напряжение на уровне 14…16 В. После того, как ИС вошла в рабочий режим, она начинает отслеживать изменения своего питающего напряжения, которое через делитель R5, R8 подается на вход обратной связи Vfb. Стабилизируя собственное напряжение питания, ИС фактически стабилизирует и все остальные напряжения, снимаемые со вторичных обмоток импульсного трансформатора.
При замыканиях в цепях вторичных обмоток, например, в результате пробоя электролитических конденсаторов или диодов, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки 3-4, недостаточно для поддержания нормальной работы ИС. Внутренний генератор отключается, на выходе ИС появляется напряжение низкого уровня, переводящее КТ в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время ее напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторяется.
5. РАСЧЕТНАЯ ЧАСТЬ
Произведем расчет делителя напряжения по каналу измерения напряжения аккумуляторной батареи
Примем R17 = 1 кОм, Uвхmax = 40 В, Uвыхmax = 5В. Тогда , Ом определим по формуле (5.1)
Ом (5.1)
где
Для нахождения параметров время задающей цепи (R4C6) примем:
f = 60 кГц (частота преобразований), R4 = 20 кОм. Тогда С6, в нФ выразим из формулы:
(5.2)
нФ
Произведем расчет выходной мощности , Вт преобразователя собранного на микросхеме UC3843.
(5.3)
где fр – частота импульсов идущих на лампу вспышку, Гц.
Вт
Определим коэффициент трансформации повышающего трансформатора преобразователя по формуле 5.3
, (5.3)
где В, рабочее напряжение транзистора;
В - выходное напряжение преобразователя;
В - напряжение питания;
- коэффициент запаса;
- коэффициент трансформации;
Выразим К12 из формулы 5.3
Приведем емкость высоковольтного конденсатора к первичной цепи
мкФ (5.4)
Рисунок 5.1 – Фаза заряда дросселя
(5.5)
(5.6)
Рисунок 5.2 - Режим прерывистых токов дросселя
(5.7)
(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
Найдем индуктивность дросселя L, в Гн приравняв (5.12) к (5.3), получим
, где (5.13)
= 60000 Гц, частота работы преобразователя.
С учетом КПД
(5.14)
Примем = 0.25 А, = 0.8. Подставим эти значения в формулу 5.14 найдем индуктивность дросселя.
В
мкГн
Выбираем магнитопровод К12×5×5.5 из феррита 4000НМ с параметрами
So =20 мм2, S = 18.1 мм2, lср=23.6 мм
Число витков в первичной обмотки [13] определим по формуле 5.15
, (5.15)
где - коэффициент индуктивности, Гн.
Вычислим величину немагнитного зазора δ, в мм [14] по формуле 5.16
мм(5.16)
Определим число витков во вторичной обмотке
(5.17)
Определим число витков в обмотке обратной связи
(5.18)
Рассчитаем диаметры проводов обмотки d, в мм трансформатора [3], значения токов первичной и вторичной обмоток возьмем из математической модели построенной в MATLAB.
Зададимся плотностью тока J = 2.5 А/мм2.
i1 = 0.096 A;
i2 = 0.005 A;
мм(5.19)
мм
мм
... -4002; 5) пинцет ППМ 120 РД 107.290.600.034-89; 6) тара АЮР 7877-4048. Суммарное оперативное время Топ = 2 мин. Комплект технологической документации на технологический процесс сборки и монтажа блока стробоскопического прибора приведен в приложении. 5. ПРОЕКТИРОВАНИЕ УЧАСТКА СБОРКИ И МОНТАЖА Внедрение на предприятии механизированных, автоматизированных и автоматических поточных линий ...
... заслонки. д) Подсоединить шланги вентиляции картера и вакуумный шланг. е) Подсоединить трос системы поддержания скорости. ж) Установите воздуховод с переходником. 3.Техническое обслуживание трансмиссии 3.1 Проверка рабочей жидкости в АКПП Автомобиль должен совершить пробег для достижения нормальной рабочей температуры 70 - 80°С рабочей жидкости. 1. Установить автомобиль на ровной ...
... . На участке установлены кран-балки в первом и втором помещении, для перемещения тяжелых запасных частей, и самого двигателя в целом. 1.3.8 Организация ТО и ТР на участке Схема технологического процесса Т.О. и ремонта автомобилей При возвращении с линии автомобиль проходит через контрольно-технический пункт (КТП), где дежурный механик проводит визуальный осмотр автомобиля (автопоезда) и ...
... рынке для выживания в конкурентной среде и успешного развития предприятию необходим четко разработанный план как на длительную перспективу, так и на текущий период. ГЛАВА 2. АНАЛИЗ ПОЛОЖЕНИЯ ПРЕДПРИЯТИЯ ООО «АВТОДОМ-АТЭКС» НА РЫНКЕ УСЛУГ АВТОСЕРВИСА 2.1 Краткая технико-экономическая характеристика предприятия Предприятие «Автодом–Атэкс» учреждено на основании решения участников от 23 ...
0 комментариев