Рязанский государственный радиотехнический университет
Курсовая работа
по курсу общая электротехника и электроника
На тему
Трехфазные и линейные цепи периодического несинусоидального тока
Рязань 2007
Содержание
Введение
Глава 1. Трехфазные цепи
1.1 Понятие о многофазных источниках питания и о многофазных цепях
1.2 Соединения звездой и многоугольником
1.3 Расчет симметричных и несимметричных режимов трехфазных цепей
Глава 2. Линейные цепи периодического несинусоидального тока
2.1 Способы представления и описания
2.2 Расчет режима
2.3 Мощности в цепи несинусоидального тока
Заключение
Список литературы
Введение
Электротехника - это наука о техническом (т.е. прикладном) использовании электрических и магнитных явлений. Большое значение электротехники заключается в том, что средствами электротехники
- эффективно получают и передают электроэнергию;
- решают вопросы
· передачи и преобразования сигналов и информации: звук человеческой речи преобразуют в электромагнитные колебания (телефон, радио);
· хранения информации (телеграф, радио, магнитная запись);
- выполняют математические операции: вычислительные машины с огромной скоростью выполняют любые математические операции, в том числе и решение сложных уравнений.
Теоретические основы электротехники заложены физикой (учением об электричестве и магнетизме) и математикой (методами описания и анализа электромагнитных явлений). Наряду с этом развитие электротехники привело к ряду новых физических понятий, новых формулировок физических законов, к развитию специальных математических методов, связанных с описанием и анализом типичных явлений, протекающих именно в электротехнических устройствах.
Глава 1. Трехфазные цепи
1.1 Понятие о многофазных источниках питания и о многофазных цепях
Многофазной системой электрических цепей называют совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые относительно друг друга по фазе и создаваемые общим источником электрической энергии (;;…;). Токи, протекающие в каждой из цепей, входящих в многофазную систему, так же сдвинуты относительно друг друга по фазе.
Обычно электрические цепи, образующие многофазную систему цепей, тем или иным способом электрически соединяют друг с другом. При этом многофазную систему называют многофазной цепью. Совокупность ЭДС, действующих в отдельных цепях многофазной цепи, а также совокупность токов и напряжений в них называют многофазной системой соответственно ЭДС, токов и напряжений.
Отдельные цепи, являющиеся составными частями многофазной цепи, называют фазами многофазной цепи. Как уже было сказано, каждая фаза пропускает свой ток с определенной фазой.
Обратите внимание, что словом «фаза» здесь обозначается не только значение аргумента синусоидальной функции, характеризующее стадию периодического процесса, но и участок многофазной цепи, содержащий один и тот же ток. Понимать это надо следующим образом: когда говорят о фазе многофазной цепи, то под этим понимают фразу: часть многофазной цепи, содержащая источник ЭДС с начальной фазой , или пропускающая ток с начальной фазой .
Надо постоянно помнить, что в зависимости от рассматриваемого вопроса, термин «фаза» - это либо участок, составная часть сложной многофазной цепи, либо аргумент синусоидальной функции.
Число фаз многофазной цепи будем обозначать через m. В частности при m=3 имеем трехфазную цепь.
Многофазные системы ЭДС получают с помощью многофазных генераторов. Принцип их работы рассмотрим на примере трехфазного генератора. В равномерном магнитном поле с постоянной угловой скоростью вращается три одинаковые жестко скрепленных катушки. Их плоскости смещены в пространстве на .
Аналогично можно получить и любую другую систему ЭДС с другим их количеством и фазовыми соотношениями.
Количество ЭДС определяется количеством обмоток у генератора, а фазовые соотношения – поворотом обмоток относительно друг друга в пространстве.
Классификация многофазных цепей
В первую очередь многофазные системы разделяют по количеству фаз. Бывают двухфазные цепи, трехфазные, шестифазные и реже двенадцатифазные.
Многофазные системы бывают симметричные и несимметричные. Симметричной называют многофазную систему ЭДС, в которой ЭДС в отдельных фазах равны по амплитуде и отстают по фазе относительно друг друга на углы, равные , где - любое целое число. Несимметричными системами называют многофазные системы, которые не удовлетворяют этим условиям.
В зависимости от величины могут быть симметричные системы прямой, обратной или нулевой последовательности. У систем прямой последовательности ЭДС проходят через максимальные значения в порядке номеров: , , и т.д. У систем обратной последовательности наоборот. И у систем нулевой последовательности все ЭДС проходят через максимум одновременно (==).
Отметим важное обстоятельство: для симметричной системы прямой и обратной последовательности сумма ЭДС во всех фазах равна нулю .
Другим важным признаком классификации является зависимость или независимость мгновенной мощности многофазной системы от времени.
Уравновешенными называются многофазные системы, мгновенная мощность которых не зависит от времени и неуравновешенными – системы, у которых мгновенная мощность является функцией времени.
Это весьма важная характеристика многофазной системы. В уравновешенных системах остается постоянным момент на валу многофазного генератора, а в неуравновешенных он пульсирует с частотой .
Мгновенная мощность одной - й фазы равна
.
Мгновенная мощность многофазной системы: .
Сумма вторых слагаемых будет равна 0 при и мгновенная мощность симметричной системы:
, т.е. многофазная система уравновешена, если .
Большим достоинством многофазных систем является возможность создания вращающегося магнитного поля, что лежит в основе конструкции асинхронных двигателей переменного тока. Причем минимальное число фаз, при котором получается круговое магнитное поле, т.е. у которого амплитуда не зависит от угла поворота, равна трем.
Таким образом, в основном благодаря уравновешенности и возможности создания кругового вращающего магнитного поля трехфазная симметричная система нашла почти исключительное применение в электроэнергетике.
... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9). Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...
... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...
... тока». Расскажите о мостовой схеме двухполупериодного выпрямителя. Дайте определение логического НЕ. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА Билет № 12 Как определяется реактивное сопротивление? Единицы измерения. Дайте определение понятию механической характеристики двигателя ...
... и у нас получится вектор напряжение смещения нейтрали . Вектора токов строим из начала координат. По диаграмме можно определить напряжение нейтрали: или 3. Расчет переходных процессов в линейных электрических цепях с сосредоточенными параметрами, включенных на постоянное напряжение Дана схема Решение 1. Установившийся режим до коммутации. Имеет место ...
0 комментариев