2.2 Расчет режима
Периодический несинусоидальный режим в линейных цепях возникает в одном из двух случаев:
1) в схеме есть источники энергии различной частоты, причём частоты кратны некоторому общему числу;
2) в цепи действуют источники энергии не синусоидальной формы, но с кратными периодами. Задачи этого типа легко сводятся к задаче первого типа, если каждый источник разложить в ряд Фурье, тогда схема замещения несинусоидального источника ЭДС:
Задача первого типа легко решается методом наложения, т.к. цепь линейная. После расчёта всех частичных режимов ответ записывают как сумму мгновенных значений каждого режима, а уже затем ищут то, что требуется.
Пример:
, ,
1)
,
, .
2) расчет на первой гармонике
, , ,
,
,
3) ,
Опять приходится рассчитывать сопротивление элементов, т.к. в каждом частичном режиме своя частота и получается, что сопротивление реактивных элементов зависят от номера гармоники.
,
,
,
Как видно из расчёта при входное сопротивление относительно зажимов ЭДС чисто активное, т. е. на этой гармонике наблюдается резонанс.
Вообще под резонансом в цепи с несинусоидальным режимом понимают резонанс на какой-то k-ой гармонике, т.к. в целом при несинусоидальном режиме понятие фазы неприменимо. На k-ой гармонике определение резонанса звучит как обычно. Другим важным примером из расчёта является то, что в разных участках цепи соотношение между гармониками различно, из-за того, что сопротивления реактивных элементов зависят от номера гармоники. Это широко используется для построения электрических фильтров.
2.3 Мощности в цепи несинусоидального тока
Различают:
1) мгновенная мощность: ,
2) полная мощность: ,
3) активная мощность: ,
4) реактивная мощность: .
Способ расчёта потребляемой и генерируемой мощности такой же как и всегда.
Если u(t) и i(t) представлены в виде рядов Фурье: , , то можно упростить вычисление активной мощности.
Перемножим записанные ряды; получим три вида слагаемых:
1) ;
2)
где k одно и то же;
3) произведение гармоник с разными номерами.
При интегрировании за период Т – каждое слагаемое третьего типа даёт ноль. Интеграл от слагаемого второго типа будет давать т.к. интеграл от за период равен нулю. Слагаемое первого типа даст .
В результате получим, что
т.е. фактически активная мощность периодического несинусоидального тока равна сумме активных мощностей всех гармоник, начиная с нулевой.
, ,
, .
По аналогии вводится реактивная мощность, только вместо cos будет sin, и не будет учитываться нулевая гармоника:
.
Заключение
На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.
На практике к несинусоидальности напряжений и токов следует подходить двояко:
- в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
- в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В заключение следует отметить, что методика расчета линейных цепей при несинусоидальных токах сводится к следующему:
Ø ЭДС и токи источников раскладываются в ряды Фурье.
Ø Осуществляется расчет цепи в отдельности для каждой гармонической.
Ø Искомые величины определяются как алгебраические суммы соответствующих гармонических.
Список литературы
1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.
2. В.П. Попов. Основы теории цепей. Учебник для вузов. -М.: Высшая школа, 1985. 496 с.
3. Л.А. Бессонов. Теоретические основы электротехники. Электрические цепи. Изд. 10. Учебник для вузов.- М.: Гардаргики, 2002. 638 с.
4. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)
5. Электротехника и электроника: Методические указания к расчетно-графической работе / Рязан. гос. радиотехн. акад.; Сост. Г.В. Спивакова. Рязань, 2005. 16 с. (№3665)
6. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н. Зуб, С.М. Милюков. Рязань, 2005. 16 с.
7. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков. - М.: Энергия, 1979. 424 с.
8. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.
9. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
10. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
11. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.1. К.М. Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9). Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...
... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...
... тока». Расскажите о мостовой схеме двухполупериодного выпрямителя. Дайте определение логического НЕ. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА Билет № 12 Как определяется реактивное сопротивление? Единицы измерения. Дайте определение понятию механической характеристики двигателя ...
... и у нас получится вектор напряжение смещения нейтрали . Вектора токов строим из начала координат. По диаграмме можно определить напряжение нейтрали: или 3. Расчет переходных процессов в линейных электрических цепях с сосредоточенными параметрами, включенных на постоянное напряжение Дана схема Решение 1. Установившийся режим до коммутации. Имеет место ...
0 комментариев