Бросаются две игральные кости. Найти для произведения очков на выпавших гранях: математическое ожидание; дисперсию

4448
знаков
1
таблица
0
изображений

5. Бросаются две игральные кости. Найти для произведения очков на выпавших гранях: математическое ожидание; дисперсию

 

Решение. Введем независимые случайные величины  и  равные, соответственно, числу очков, выпавших на первой и на второй кости. Они имеют одинаковые распределения:

1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

Найдем математическое ожидание

.

Найдем дисперсию

.

Тогда математическое ожидание  суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равно

.

Дисперсия суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равна (так как бросания костей независимы):


.

Ответ: 7; 35/6.

6. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 30 и 4. Найти вероятность того, что Х в 5 испытаниях ровно 3 раза примет значение, заключенное в интервале (29, 31)

Решение. Используем формулу

,

где математическое ожидание, среднее квадратическое отклонение α=29, β=31.

P(29<х<31)=Ф(=Ф(0,25)-(0,25)= Ф(0,25)+Ф(0,25) = 2∙Ф(0,25) = 2∙0,3413∙0,25 = 0,17065 Ответ: 0,17065

7. В порядке серийной выборки из 1000 контейнеров бесповторным отбором взято 10 контейнеров. Каждый контейнер содержит равное количество однотипных изделий, полученных высокоточным производством. Межсерийная дисперсия проверяемого параметра изделия равна 0,01. Найти: границы, в которых с вероятностью 0,99 заключено среднее значение проверяемого параметра во всей партии, если отобрано 50 контейнеров, а общая средняя равна 5

При беспроводном отборе применяется формула:


n=

N=1000 n==5

p=0,99 ≈0,98

Подставим:

5=

5=

5000+0,049=98

0,049=98

Т.к. х=5, то интервал 50,14


Информация о работе «Расчет математического ожидания и дисперсии»
Раздел: Математика
Количество знаков с пробелами: 4448
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
10406
4
1

... получаем, что с доверительной вероятностью р=0,997: а для р=0,95 которые называются доверительными интервалами для теоретической средней М. Ясно, что если доверительные интервалы для М из двух групп не пересекаются, то нулевую гипотезу следует отвергнуть. Например, опросили еще одну группу из N =9 человек и получили следующее число правильных ответов: шкала xi 6 7 8 9 10 11 12 13 ...

Скачать
71569
0
3

... гипотезу. Вроде бы это надо делать так:     Теперь результаты наблюдений над выручкой G можно представить в виде четырех наблюдений над U: –11,+1,+3,+7. Теория математической статистики предлагает следующий, т.н. биномиальный критерий проверки гипотез в подобных ситуациях. Предполагается, что распределение вероятностей наблюдаемой величины U симметрично относительно значения математического ...

Скачать
138817
24
10

... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1.  Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...

Скачать
32541
0
1

... же для нахождения энергетически оптимальной концентрации эритроцитов в крови, парциального давления в артериальной и венозной крови, определения оптимальных функциональных параметров системы внешнего дыхания и др. 2 Принцип минимального воздействия в эколого-математических моделях Один из способов применения целевой функции состоит в формулировании общего утверждения относительно поведения ...

0 комментариев


Наверх